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ABSTRACT

Modeling global atmospheric circulations and forecasting the weather would improve
greatly if worldwide information on winds aloft were available. Recognition of this led
to the inclusion of the LAser Wind Sounder (LAWS) system to measure Doppler
shifts from aerosols in the planned for Earth Observation System (EOS) [Curran,
1987). However, gaps will exist in LAWS coverage where heavy clouds are present.
The RAdar Wind Sensor (RAWS) is an instrument that could fill these gaps by
measuring Doppler shifts from clouds and rain.

Previous studies conducted at the University of Kansas show RAWS as a feasible
instrument. This thesis pertains to the signal-to-noise ratio (SNR) sensitivity, transmit
waveform, and limitations to the antenna scan pattern of the RAWS system. A
drop-size distribution model is selected and applied to the radar range equation for the
sensitivity analysis. Six frequencies are used in computing the SNR for several cloud
types to determine the optimal transmit frequency. The results show the use of two
frequencies, one higher frequency (94 GHz) to obtain sensitivity for thinner cloud, and
a lower frequency (24 GHz) for better penetration in rain, provide ample SNR.

The waveform design supports covariance estimation processing. This estimator
eliminates the Doppler ambiguities compounded by the selection of such high transmit
frequencies, while providing an estimate of the mean frequency. The unambiguous
range and velocity computation shows them to be within acceptable limits.

After defining the waveform and computing the standard deviation of the estimator,
the scan pattern limitations are given. Wind-measurement error, comprised of velocity
uncertainty and antenna pointing errors, is determined for three antenna scan patterns.
The design goal for the RAWS system is to limit the wind-speed error to less than 1
ms?'. Due to linear dependence between vectors for a three-vector scan pattern, a
reasonable wind-speed error is unattainable. Only the two-vector scan pattern falls
within the wind-error limits for azimuth angles between 16° to 70°. However, this
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scan only allows two components of the wind to be determined. As a result, a
technique is then shown, based on the Z-R-V relationships, that permits the vertical
component (i.e., rain) to be computed. Thus the horizontal wind components may be
obtained from the covariance estimator and the vertical component from the
reflectivity factor.

Finally, a new candidate system is introduced which summarizes the parameters taken
from previous RAWS studies, or those modified in this thesis.



CHAPTER 1

INTRODUCTION

1.1 HISTORY OF RADAR AND APPLICATIONS

Over the past 50 years, radar technology has grown far beyond the meaning of the
acronym: RAdar Detection And Ranging. The development of radar stemmed from
the necessity for accurate navigation and long range detection of enemy targets during
the second world war. The first radars utilized an unmodulated continuous wave
(CW) waveform that provided only Doppler information. These experimental radars
detected the interference produced between the direct signal received from the
transmitter and the Doppler-frequency-shifted signal reflected by a moving target
[Skolnik, 1980]. The need for accurate range information was realized early and more
sophisticated modulation techniques, such as frequency modulation CW (FM-CW) and
pulsed CW, were implemented. These techniques gave rise to the moving target
indicator (MTI) and synthetic aperture (SAR) radars for detecting moving targets and
increasing cross-range resolution, respectively.  Although radar was originally
developed to satisfy surveillance and weapon control requirements for the military,
there have been significant civil applications for the safe travel of aircraft, ships, and
spacecraft; the remote sensing of the environment, especially the weather; and law
enforcement, as well as many other applications. The use of pulse-Doppler radar
technology, using modern digital signal-processing and advanced display technology,
has advanced to the point where the United States is replacing its existing
non-Doppler weather radar network with a next-generation Doppler system
(NEXRAD). This system will provide quantitative and automated real-time
information on storms, precipitation, hurricanes, tornadoes, and a host of other
important weather phenomena [Skolnik, 1990]. In research areas, numerous
ground-based VHF and UHF Doppler radar systems are measuring turbulence and
local wind, while some microwave radar systems are measuring cloud returns
[Lhermitte, 1988]. However, few space-borne Doppler radar systems have been
studied for global wind measurement purposes.



1.2 WEATHER PREDICTION

Accurate prediction of weather is important to agriculture, transportation, flood
control, and many other industries. Global system models relevant to climate are
assuming increasing importance. Current global atmospheric models use pressure
measurements and thermodynamic properties to calculate the effects of wind for use in
Numerical Weather Prediction (NWP) models. Inputs to the NWP models are
temperature, pressure and wind at different heights. However, direct wind
measurements could significantly improve the NWP model performance [Kalnay,
1985]. Global twice-daily measurements, with the accuracies and resolutions
summarized in Table 1.1, would result in more accurate medium-range (up to five
days) forecasts in the Northern Hemisphere, where most of the conventional,
ground-based, wind sensors (rawinsonde network) operate. In the Southern
Hemisphere, where ground-based sensors are scarce because of the larger ocean areas,
major improvements are possible [Baker, 1985].

Table 1.1 Global and synoptic scale observational requirements.

Horizontal resolution 100 km (meso-a scale)
Vertical resolution 1 km (0.5 km in boundary layer and in
the vicinity of the jet stream)
Temporal resolution 6 hours
Accuracy of the wind component 1-2 m/s in lower troposphere
2-5 m/s in upper troposphere
Directional accuracy % 10 degrees

Table 1.2 presents characteristics of four cloud classifications. Both the widespread
irregular stirring and regular ascent cloud classes, characterized by a large horizontal
extent, support the immense resolution cells as given in Table 1.1.

Today's operational wind-velocity observing systems are fixed on the ground or on
towers, and mobile on ships, aircraft or balloons. These techniques are limited to local
observations that do not lend themselves to a global perspective. Global-scale
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measurements require satellite-based systems. The laser atmospheric wind sounder
(LAWS) was proposed for this purpose as part of the EOS. The LAWS system will
determine the wind-vector by measuring the Doppler shift of the signal scattered from
aerosols in the atmosphere with a conically scanned optical sensor. Successive
measurements from different directions will provide global coverage of wind-vector
profiles throughout the troposphere. These measurements will have a spatial scale of
100 km by 100 km at 1 km height intervals, and an expected accuracy of better than 1
ms™! [Curran, 1987]. If, however, dense clouds are present, LAWS will be unable to
measure the winds below the cloud tops. Thus an instrument that can penetrate clouds
is necessary and is the basis for the radar wind sounder (RAWS). Although a feasible
satellite radar cannot measure the winds in clear air as does LAWS, it can measure
Doppler shifts of the reflections from hydrometeors that form the clouds. With the
RAWS and LAWS systems operating in tandem, the measurement of wind vectors in
both clear and cloudy conditions would be possible. Moreover, RAWS can be used in
the role of measuring rain rates (like TRMM), and ocean-surface winds (like
N-SCATT and ERS-1).

1.3 THE RADAR WIND SOUNDER

The RAWS study pertains to the trade-offs involved in designing a satellite-borne
radar to measure wind vectors. The primary tasks related to the RAWS study are to
determine:

1 - scattering and attenuation models,
2 - required radar sensitivity,
3 - optimal frequencies,
4 - needed antenna size,
5 - suitable scan pattern,
6 - removal of the ambiguity imposed by range and Doppler-frequency sizes,
7 - spectrum measurements,
8 - system configuration,
9 - performance as a rain sensor,
10 - performance as an ocean-surface wind sensor.



Previous efforts were accomplished by two University of Kansas graduate students:
Weizhaung Xin [Xin, 1990] and Tim Propp. Xin studied items 1-6, to a lesser degree
item 7, and developed a candidate system selected after preliminary study of
frequencies and sensitivities. The candidate system parameters are shown in Table 1.3.

Table 1.3 Original RAWS candidate system parameters.

Altitude 830 km

Target Volume Coverage 100 km x 100 km x 20 km
Look Angles (from vertical) 30° and 35°

PRF 3500 Hz

Transmit Frequencies 10 GHz and 35 GHz
Pulse Width (Compressed) 1 usec

Time-Bandwidth Product 20

Antenna Diameter §m

Scan Period 10 sec

Vertical Resolution 2 km (10 GHz) and 1 km (35 GHz)
Peak Power 3000 W

Receiver Noise Figure 4 dB

Transmitter Losses 1.5dB

Receiver Losses 1.5dB

Spacecraft Speed 7.5 km/s

Xin analyzed two frequencies that allowed for higher sensitivity for clouds (35 GHz)
and more penetration for rain (10 GHz). The power was selected to be on the order
of that used in current and planned space-borne SARs. The antenna size was selected
large enough to allow reasonable vertical resolution in clouds and rain, along with
adequate resolution of individual cells. An orbit height was chosen that would give a
reasonable coverage swath. Although a lower orbit would allow more sensitive
measurements, a higher one would produce a wider swath. The need for three
independent measurements to compute all three components of the wind (and rain)
vector led to the use of a conical scan pattern with beams at two depression angles,
allowing four observations per scan. Figure 1.1 illustrates the scan pattern. Xin



concluded that the antenna scan would require an electronic squint to obtain a
sufficient number of samples while reducing the effects of decorrelation.

Xin also studied several waveforms and estimators to eliminate the range and Doppler
ambiguities while providing an accurate first moment (mean frequency) estimate. Xin
concluded that a covariance estimator with a special modulated pulse-pair waveform
produced the least error. The modulation required the first pulse of the pulse-pair to
be up-chirped while the second pulse was down-chirped. The chirp modulation
allowed the receiver to distinguish between the two pulses permitting the pulse-pair to
remain unambiguous in range provided the inter-pair spacing was large enough.

Propp continued the analysis of the RAWS program by conducting a detailed study of
the radar sensitivity issue. He began by searching for an accurate cloud drop-size
distribution model to be used in the radar sensitivity calculations. From this literature
search, the Deirmendjian distribution model was chosen and used in a system
signal-to-noise ratio (SNR) computer program written by Propp. The results
generated for this thesis are based on a modified version of Propp's SNR program.

1.4 OUTLINE

This thesis concludes the satellite-based Doppler radar sensitivity analysis and further
defines the antenna scan pattern. Building on the efforts of Xin and Propp, the key
issues presented include:

« verification of Deirmendjian model with available measured data,

« validation of the Rayleigh criterion,

 inclusion of atmospheric gas attenuation in SNR program,

« selection of optimal frequency(s),

« study of waveform parameters to minimize range and Doppler ambiguities,
¢ study of optimal scan pattern.
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Figure 1.1 RAWS Conical Scan Pattern [Xin, 1990].



Chapter 2 gives a review on the theory of radar scattering from particles as well as
details on the drop-size distributions studied. The specific parameters used in the SNR
calculations are presented and the differences to the original candidate system of Table
1.3 discussed. The SNR data is analyzed for six frequencies and the optimum
frequency(s) determined.

In Chapter 3 a review of the weather echo's statistical properties is given along with
the development of the covariance estimator. The transmit waveform is defined based
on the computation and validation of the unambiguous range and velocity.

Chapter 4 defines the two wind-error contributors, velocity uncertainty and antenna
pointing-angle errors, used to determine the optimal antenna scan pattern. The
maximum wind-error is calculated for three antenna scan patterns and specific issues
discussed for each one.

Chapter 5 presents modifications to the candidate system of Table 1.3. A number of
parameters, and the associated definitions, are shown.

Chapter 6 presents conclusions and suggestions on further study.



CHAPTER 2

RAWS SENSITIVITY STUDY

2.1 BACKSCATTERING AND ATTENUATION FROM CLOUDS

This section presents the formulas used to model the backscatter, attenuation, and
scattering cross-sections of clouds, for both Mie and Rayleigh scattering. These
formulas are then introduced into the radar range equation for calculating the system
signal-to-noise ratio (SNR). The effect of atmospheric gaseous attenuation is also
discussed and included in the SNR equation.

2.1.1 RADAR CROSS-SECTION

The radar cross-sections are based on an electromagnetic wave of power density §;
(Wm?) incident upon a suspended material particle of geometrical cross-sectional area
A. A fraction of the incident power is absorbed by the particle, and an additional
fraction is scattered by the particle in all directions. Three parameters model the
behavior of the electromagnetic waves in the presence of such particles: the
absorption, the scattering and the backscattering (i.e., the scattering in the direction of
the radiation source) of the electromagnetic energy [Ulaby, 1981]). The ratio of
absorbed power P, to incident power density S; is defined as the absorption cross-
section, Qg4

0,=%2.  m @.1)

The ratio of O, to the physical cross-section A is known as the absorption efficiency
factor, £,. For a spherical particle of radius 7, A=nr? resulting in

ta= @2)



Consider an incident plane wave traveling in the z-direction, S(6,0) is the power
density of the radiation scattered in the direction (0,) at a distance R from the
particle. The total power scattered by the particle is the integral of S5(6,4) over the
spherical surface of radius R centered on the particle; mathematically,

Ps=[ Ss0.0)R2dQ. W 2.3)

Similar to the absorption cross-section, the scattering cross-section, J¢, and scattering
efficiency factor £ are defined as

Os =§f, m? (2.4
g =25 @5)

The extinction (or attenuation) cross-section, (., is defined as the total power
removed from the incident electromagnetic wave and is the sum of the absorption and

scattering cross-sections:

Qe=Qa+Qs. m (2.6)

Likewise for the extinction efficiency factor,

Ee=8at+&s. 2.7

The radar backscattering cross-section, Gp, is defined as the power density scattered in
the backwards direction towards the radiation source, S5(0=m,$), such that op

10



multiplied by the incident power density S; would be equal to the total power radiated
by an equivalent isotropic radiator. At a distance R from the scatterer, Ss(n,$) is
given by

Sio
Ss(nd) = g5 Wm? 238)

or by solving for the radar backscattering cross-section [Ulaby, 1981],

op = 47R? &%&1 m? (2.9)

2.1.2 MIE SCATTERING

The calculation of the absorption, scattering, and backscattering cross-sections for an
arbitrary shape is very difficult. However, the solution for a dielectric sphere of radius
r was derived by Mie [Mie, 1908]. The results are given in the form of converging
series:

~|N

Esmx) =2 D @1+ D(a)* +18,1%), (2.10)
]

NIN

Ee(n,y) = i (271 + Refa; + b;}, (2.11)
/

-4} 2
3 (121 + 1)(g; - b,)l . 212
i

o 1
and  Lp(mx)= ;,b; =3

with ¥ defined as
2nr  2mwr

X = kpr = M Ao €'rb, (2.13)

11



and n as
n=22='\/8—0‘1=\]:»;_ (2.14)
np €cb ¢ '

where:  a; and b; are known as the Mie coefficients,

k; = the wave number in the background medium,

€', = the real part of the relative dielectric constant of the background
medium,

Ap = the wavelength in the background medium,

A, = the free-space wavelength,

= complex index of refraction of the particle relative to the

background medium,

np = complex index of refraction of the particle material,

ny = complex index of refraction of the background medium,

ecp= complex dielectric constant of the particle material,

€., = complex dielectric constant of the background medium,

gc = complex dielectric constant of the particle relative to the background
medium.

When the background medium is air, as is true in the atmosphere, then €', = 1,
ny =1, and Ay = A,. The equations for the Mie coefficients are not repeated here but
can be obtained from several references [Mie, 1908; Ulaby, 1981].

2.1.3 RAYLEIGH-APPROXIMATION SCATTERING

When the particle size being measured is much smaller than the wavelength of the
incident wave such that |ny| << 0.5 is satisfied, the Mie expression for &5 and £, may
be expressed by only the first two terms of the Mie series (2.10) and (2.11) and take
the form

8
&s =3 x* IKI2, (2.15)

and Ee =43 Im(-K) +3 24 K2, (2.16)
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n?-1 gc-1
T nt+2 g +2°

where K 2.17)

The absorption efficiency factor can then be obtained by subtracting (2.16) from (2.15)

resulting in:

Ea=Ee-Es=4yIm(-K). (2.18)

The corresponding scattering and absorption cross-sections for a single spherical
scatterer can now be determined using (2.2) and (2.5):

2
Qa = )”; x’ m(-K),  m? (2.19)

2
and Qs = % x6|K]? m? (2.20)

For small values of %, and finite values of n, it can be shown [Kerr, 1951] that (2.12)
reduces to

Eo=4x* K12 (2.21)

64n’
and op=nrity = X:t ré |K)?, m? (2.22)

in the—Rayleigh region defined by |ny| < 0.5 [Ulaby, 1981].

Equations (2.19), (2.20) and (2.22) indicate that to determine the cross-sections for a
spherical particle of radius r at a given wavelength A, only the values for |K}? and
Im(-K) are required. For water, the value of |K]? is approximately equal to 0.9 for
frequencies between 3 GHz to 30 GHz and temperatures from 0°C to 20°C, while
Im(-X) increases with frequency [Ulaby, 1981]. Particular values of |K|? and Im(-K)
are tabulated in a number of sources [Battan, 1973; Meneghini, 1990] and are also
attainable from the Debye equation [Ulaby, 1986] used in conjunction with (2.17).
For ice particles, the real value of n; (the complex index of refraction for ice) is
approximately frequency- and temperature-independent and is given by

13



Re(n;) = 1.78. (2.23)

The imaginary part of n; varies with frequency and temperature but its value is much
smaller than Re(n;). This implies |n;|~Re(n;). Tables 2.1 and 2.2 present values of
|K]? and Im(-K) for both water and ice, respectively.

Table 2.1 |K1? and Im(-K) values for water clouds [Battan, 1973].

Wavelength (Cm)
Quantity Temperature
)
10 w 1.24 062
20 8.88 8.14 6.15 4.44
n [ 10 9.02 7.80 5.45 394
"""" 0 8.99 7.14 475 3.45
-8 | 6.48 4.15 3.10
20 0.63 2.00 2.86 2.59
x [ 10 0.90 2.44 2.90 2.3
"""" 0 1.47 2.89 .17 2.04
T R [P 2.55 1.77
20 0.928 0.9275 09193 0.8926
K[ { 10 0.9313 0.9282 09152 0.8726
""" 0 0.9340 0.9300 0.9055 0.8312
-8 ... e eeee 0.8902 0.7921
20 0.00474 0.01883 0.0471 0.0915
Im(=K 10 0.00688 0.0247 0.0615 0.1142
m=K) . .. 0 0.01102 0.0335 0.0807 0.1441
-8 J.....0 0o 0.1036 0.1713

Sounce: Gunn and East 1954,

Table 2.2 |K12 and Im(-K) values for ice clouds [Battan, 1973].

Quantity Tem(v.::r)uuvc Valve
N All temperatures when
p =092 gm/cm’ 1.78
0 2.4x1073
Koo e e e e e e =10 7.9%10°¢
=20 5.5x10°¢
7. L All temperatures
when p =1 0.197
0 9.6x10°*
Im(—K)........ -10 3.2x10°¢
-20 2.2x10¢

Sounrce: Gunn and East 1954,
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As indicated earlier, the Rayleigh approximation only applies when the particle
diameters are small compared to the incident wavelength. For computational
purposes, this implies |ny| < 0.5. The Mie and Rayleigh approximation for the
extinction and scatter efficiency factors, £, and £, of water clouds are shown in
Figures 2.1a, b, and c.

Ice clouds may contain particles with radii up to about 10 mm, but due to the smaller
refractive index (see Tables 2.1 and 2.2), the Rayleigh criterion is applicable up to
about 70 GHz for €, and up to 200 GHz for € [Ulaby, 1981].

10
1.0 Rain (25.4mm/hr)
- Cumulus Congestus l
w - Cloud
. Fair Weather
g>“ Cumulus Cloud'
:5 0.1
= -
K o
>3 =
0.01
= A, = 10em (3 GHz)
~ n, =8.87-j0.628
[~ T=273K
0.001 L1 b1t L1 1 1 W AN EREES
10 100 1,000 10,000
Sphere Radius r (um)
(a)

Figure 2.1 Mie efficiency factors for scattering and extinction by a water
sphere as a function of drop radius at: (a) 3 GHz, (b) 30 GHz, and (c) 300
GHz. Horizontal arrows indicate range of drop radii [Fraser, 1975].
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0.001 1 IS SNET Lo 1o 1t L1l
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2.1.4 VOLUME SCATTERING

In a cloud resolution volume, the scatterers (water or ice particles) are randomly
distributed within the volume, so there are no coherent phase relationships between the
fields scattered by the individual particles. This assumption allows the use of
non-coherent scattering theory when computing the average absorption and
backscattering within the volume. Additionally, the concentration of particles is
usually small enough to support the assumption that shadowing effects can be ignored.

The volume scattering coefficient, kg, is the total scattering cross-section per unit
volume, and its units are (Npm-3)xm? = Npm!. The volume scattering coefficient is
defined by

ks= [p(r)Qsdr Npm'! (2.24)

rmm

where p(r) represents the drop-size distribution (number of drops per m3 per unit
increment of 7), Oy is the scattering cross-section of a sphere with radius 7, and rpax
and rmin are the upper and lower limits of the drop radii contained in the cloud. If the
Rayleigh criterion is satisfied, (2.20) can be substituted into (2.24) resulting in

2n’ N 6
Ks =x_4|K|2 > D, Npm-! (2.25)
i=1

where N is the total number of droplets per unit volume of the cloud and D; is the
diameter of the it" droplet per unit volume.

Similarly the volume absorption coefficient can be determined by
rmax

Xa= [p(r)Qudr  Npm! (2.26)

rmm
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and using (2.19) yields

_ﬁl y 3 -1 7
Ka =7 m(-K) ’_ZID, . Npm (2.27)

By use of the following equation for water content per cubic meter

N
7 3
my =10 x ¢ Zil)' , gm-3 (2.28)
i=
the volume absorption coefficient becomes

6
Kg = —%Im(-K) m, 10, Npm-! (2.29)

The volume extinction coefficient can be obtained in the same manner, i.e.,

ke= [p()(Qs+Qa)dr  Npm'!

Fmin
Ke =Kg + XKs. Npm'! (2.30)

Note that for smaller droplet radii the value of the absorption cross-section Q4
dominates in determining the extinction cross-section Q. (see Figure 2.1). This is due
to the DS scattering-coefficient dependence as compared with the D3
absorption-coefficient dependence in the Rayleigh region. Since the cloud volume-
extinction coefficient k. is the sum of ks and x4, it is approximately equal to the
volume absorption coefficient x, for the smaller droplet radii.
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As with the scattering and absorption volume coefficients, a similar definition is used
for the volume backscatter coefficient, ¢, that of a summation (or integral) of
backscattering cross-sections of the individual drops in a unit volume:

Oy = mfxp(r)cbdr. m-! (2.31)

Tmin

Substituting (2.22) into (2.31) yields

_Ei 2 y 6 -1
ov=27 K2 YD, m (2320)
i=1
5
Gy =% KI2Z 107,  m-! (2.32b)

where Z is the reflectivity factor and is the summation of all the droplet diameters per
unit volume. The 10! factor allows for Z to be expressed in units of mm® m3,
commonly used in the meteorology community.

2.1.5 ATTENUATION BY ATMOSPHERIC GASES

Electromagnetic waves suffer attenuation due to absorption by atmospheric gases in
addition to the attenuation caused by the water droplets. The two primary gases of
concern are oxygen and water vapor. In the frequency range from 10 to 100 GHz the
only significant contributors to gaseous attenuation are a water-vapor absorption band
centered at 22.235 GHz and an oxygen band that extends from 53.5 to 65.2 GHz.
These absorption bands result in "windows" where low attenuation to radio waves
occurs. Figure 2.2 illustrates the one-way attenuation due to atmospheric gases at
zenith. For an arbitrary elevation angle, the zenith attenuation value must be
multiplied by the cosecant of the elevation angle a, giving

La(a) =2 Az csc(a) dB (2.33)
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where L,(a) is the total two-way atmospheric gaseous attenuation, A; is the zenith
one-way atmospheric gaseous attenuation as shown in Figure 2.2, and a is the
elevation angle [Ippolito, 1989].
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Figure 2.2 Total zenith attenuation versus frequency [Ippolito, 1989].
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2.1.6 RADAR RANGE EQUATION

The radar range equation has many forms depending on the application and the desired
variables with which to work. The basic radar range equation is given by

- PLGZXZO' _
(47)*R*LiL,Lo(a) ©

P, w (2.34)

where  P,= peak received power, W,
Py = peak transmitted power, W,
G = antenna gain along the beam axis,
A =wavelength, m,
R = range to scattering volume, m,
L ;= transmitter losses,
L= receiver losses,
y = one-way path attenuation, Np,
L ,=two-way atmospheric gas attenuation , dB,
o =antenna elevation angle, deg,
o = radar cross-section of scattering volume.

The attenuation, vy, is the sum of the attenuation coefficient due to clouds and
precipitation, integrated along the path R [Ulaby, 1981}

R
Y= [(Keo+xep)r Np (2.35)
0

where kec, and x.p are the cloud and precipitation extinction coefficients,

respectively.
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The radar cross-section, o, is equal to the volume backscatter coefficient 6, integrated
over the volume contributing to the received power. For a narrow-beam antenna with
3 dB-power beamwidths of 8¢ and B,, this volume at a range R is

V=7t(RB°)(RB ‘](“P) m> (2.36)
2 L 2 |2

where c is the speed of light and 1, is the pulse length. Assuming a Gaussian-shaped
antenna pattern, ¥ must be reduced by a factor of 2 In(2) to describe the equivalent

volume that accounts for the echo power received by a the two-way antenna pattern
from distributed clutter [Skolnik, 1980]. With the radar cross-section defined as

c=ocyV m? 237

the final form of the range equation becomes

_ RG*NBgByet,
" 1024n(2)n?R2L, L, Ly (o)

Oy e-Z‘Y. W (238)

The signal-to-noise ratio (SNR) can then be determined by first calculating the receiver
noise power, Py, and dividing this value into (2.38). This results in

PG?2Bg Byct
= = Bze Poctp oy 7Y . (2.39)
1024in(2)n°R?L, L, L, (o) P,
where Py = kT,BNf (2.40)

k =Boltzmann's constant, 1.38 x 10-%3,
T, = ambient temperature, 290 K,

B =receiver bandwidth, Hz,

NF = receiver noise figure.
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2.2 SIGNAL-TO-NOISE RATIO STUDY

2.2.1 CLOUD MODELS

In the Rayleigh region, (2.29) indicates only the water content, m,, of the cloud is
necessary in calculating the attenuation. However, in generating values for the
backscatter coefficient, o, knowledge of either the drop-size distribution or the
reflectivity factor (in the Rayleigh region), is required. All parameters involved in the
SNR calculation are relatively easy to measure or model with the exceptions of p(r)
and Z. Many phySicists have devoted considerable effort in accurately modeling these
parameters. Figure 2.3 illustrates examples of measured drop-size distribution for
several cloud types [Mason, 1957].

200
Fair-weather cumuli Cul ===

Cumulus congestus Cul e
Stratocumulus . SC = e
Altostratus As ~—--—

150 Nimbostratus N§ ———
/ Stratus St -

S
PaN /—§
f D

! NN A e
/ N \X |
y N \
P ~ "\
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o
ir
y
-
g §

Figure 2.3 The mean droplet-size distribution of various cloud types [Mason, 1957].
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For most water clouds, the distribution has a sharp rise in concentration for low values
of droplet radii followed by a gradual decrease for the larger drop sizes. This general
shape is evident in the distributions shown in Figure 2.3.

Xin reviewed several distribution models, including the log normal, modified gamma
distribution and the Khrigian-Mazin distributions [Xin, 1990]. Propp studied a
generalized case of the Khrigian-Mazin distribution developed by Deirmendjian
[Deirmendjian, 1964]. The Deirmendjian model used here is given by

n(r) = A r€iexp(-Br¢?) pm-* (2.41)
where
(C] +4]
C
A= mszB 2 ’
in X 106F(C1 +4)
G,
B= Clc :
C2rc 2

I' = gamma function,

m,, = mass density of the cloud, g m3,
ro = mode radius, um,

C1 and C; = shape parameters.

This distribution is based on a modified gamma function which reduces to the gamma
function when C, = 1. Values for 7., C1 and C; where given by Deirmendjian for 10
cloud types [Deirmendjian, 1969] and later expanded to include 19 various cloud types
by Reifenstein and Gaut [Reifenstein, 1971]. Only 17 of the 19 cloud types are
analyzed. The "Fog Layer, Ground to 150 ft." (20-3) and "Hazy, Heavy" (20-4)
clouds have been excluded due to their limited altitude and extremely small water
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content, respectively. Table 2.3 summarizes these parameters [Chahine, 1983]. Note

that a water cloud implies a non-precipitating cloud.

Table 2.3 Properties of standard cloud models.

Cloud Cloud Cloud Prin.
Model Cloud Name Base Top my rc Cl C2 | Comp.
1-A-1 Cirrostratus 4000 6000 0.1 40 6 0.5 I
1-M-1 Cirrostratus 5000 7000 0.1 40 6 0.5 I
1-T-1 Cirrostratus 6000 8000 0.1 40 6 0.5 I
10-1 Altocumulus 2400 2900 0.15 10 6 0.5 w
14-1 Altocumulus 2400 2900 0.15 10 6 1 W
20-1 Low-Lying Stratus 150 650 0.25 10 6 1 w
20-2 Low-Lying Stratus 500 1000 0.25 10 6 1 w
21-1C Drizzle, 0.2 mm/hr 1000 1500 1 10 6 0.5 w
21-1B 500 1000 2 10 6 0.5 W
21-1A 0 500 1 20 6 0.5 R
21-2D Steady Rain, 3 mm/hr 1000 1500 1 10 6 0.5 W
21-2C 500 1000 2 10 6 0.5 w
21-2B 150 500 1 10 6 0.5 w
21-2A 0 150 0.2 200 5 0.5 R
21-3D Steady Rain, 15 mm/hr 2000 4000 2 10 6 0.5 w
21-3C 1000 2000 3 10 6 0.5 w
21-3B 300 1000 2 10 6 0.5 w
21-3A 0 300 1 200 5 0.5 R
22-1 Stratocumulus 330 660 0.25 10 6 0.5 W
22-2 Stratocumulus 660 1320 0.25 10 6 0.5 w
25-1C Fair Weather Cumulus 1500 2000 0.5 10 6 0.5 w
25-1B 1000 1500 1 10 6 0.5 w
25-1A 500 1000 0.5 10 6 0.5 w
25-2C Cumulus, 2.4 mm/hr 1000 3000 2 20 6 0.2 W
25-2B 500 1000 1 20 6 0.2 w
25-2A 0 500 0.1 400 5 0.5 R
25-3C Cumulus, 12 mm/hr 1000 4000 4 10 6 0.2 w
25-3B 400 1000 2 20 6 0.2 w
25-3A 0 400 0.5 400 5 0.5 R
25-4E Cumulus Congestus 2500 3000 0.5 20 5 0.3 w
25-4D 2000 2500 1 20 5 0.3 w
25-4C 1600 2000 0.8 20 5 0.3 W
25-4B 1200 1600 0.5 15 5 0.4 w
25-4A 1000 1200 0.3 10 6 0.5 W
26-1F Cumulonimbus, 150 mm/hr 8000 10000 0.2 40 6 0.5 1
26-1E 6000 8000 3 10 6 0.2 w
26-1D 4000 6000 4 10 6 0.2 w
26-1C 1000 4000 8 10 6 0.2 w
26-1B 300 1000 7 20 6 0.2 w
26-1A 0 300 6.3 400 5 0.2 R
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The Deirmendjian model supports several cloud types each having one or more
horizontal layer(s) for which the composition (water, ice, or rain), mass density, mode
radius, two shape parameters, and altitude limits are specified. The maximum
concentration will occur at the mode radius, and the two shape parameters will control
the shapes of the distribution's rising and falling edges. The ability to model many
different cloud types at various altitudes is a major advantage of the Deirmendjian
model. The comparison of a sample Deirmendjian distribution given in Figure 2.4 with
the data shown in Figure 2.3 reveals a good correlation between the shapes of the
Deirmendjian model and measured results.
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Figure 2.4 Normalized Deirmendjian distribution of top layer for the steady
rain @ 3 mm/hr model (21-2).
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The drop-size distribution enters into the SNR equation (2.39) in the calculation of the
radar volume backscatter coefficient o, (2.32), and (if the Rayleigh approximation is
satisfied) in the calculation of the reflectivity factor Z using:

Dma.x
z= [mD)D°dD. (2.42)
0

where Dmax is the largest drop diameter of the distribution n#(D) to contribute
significantly to the reflectivity factor. Since Z is a function of Df, the larger droplets
greatly influence the value of Z. The reflectivity factor is commonly used by
meteorologists as a measure of return signal strength of the weather echo. Due to the
wide dynamic range of weather returns, radar meteorologists use a logarithmic scale
dBZ = 10log10Z, where Z is in units of mm® m3. Precipitation produces dBZ values
ranging from near 0 dBZ to larger that 60 dBZ in regions of heavy rainfall and hail
[Doviak, 1984]. Many formulas have been developed to compute the reflectivity
factor with minimal knowledge of the drop-size distribution. One such equation,
developed by Atlas, is given by the expression

Z= G(E)Dg (ﬂ) x 10  mmé m? (2.43)
n p

where D,, is the median volume diameter (a diameter such that half the liquid-water
content is contained in the drops with smaller diameters) in meters, m, is the liquid
water content in gm3, p is the density of the scattering material in gm-3 (10¢ gm-3 for
water), and G is a constant that was shown to equal 1.35 [Atlas, 1953]. This equation
is based on the original work of Trabert [Trabert, 1901], and the further study of aufm
Kampe and Weickmann [Weickmann, 1952], to define a relationship between
visibility, water content, and droplet size. The value of G was computed from data
generated by Boucher [Boucher, 1952] based on measurements by Diem [Diem,
1948]. A second model developed by Atlas and Bartoff is given by the simple
equation

Z=0.048 m,>. mm® m-3 (2.44)
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This equation is the result of a regression algorithm applied to Boucher's data [Atlas,
1954]. Note that both reflectivity factor equations only require minimal information
about the drop distribution, i.e., Dy and m,,.

2.2.2 VERIFICATION OF CLOUD MODEL

This section discusses the steps taken to verify the reflectivity factors calculated from
the Deirmendjian model with either measured data sets or proven models. Each of the
three cloud principal components (water, rain, and ice) is presented separately.

2.2.2.1 WATER LAYERS

Very few measurements are available to venfy the drop-size distribution and
reflectivity-factor models. Gossard published four data sets that either calculate the
reflectivity factor using the drop-size distribution, or by the use of (2.43) [Gossard,
1983]. These data are taken from the works of Weickmann-aufm Kampe
[Weickmann, 1953], Squires [Squires, 1958], Diem [Diem, 1948], and Breed [Breed,
1976], and are shown in Tables 2.4, 2.5, and 2.6.

Table 2.4 Cloud parameters by Weickmann-aufm Kampe and Squires.

Number density (N) [ Water content (M) | Reflectivity | Median diameter (Do) 6th power Atlas Barthoff (2) X D*
ssan diameter T e
Cload type (n'a) Mg n-3) Z (nn6 l'3) (m) (m) 2 (-6 - (-:6 -'3)
Ve Fair weather 5 -6
£8  cumulus 302x10 1.0 32x10 0.0845
g
E&: Cumulus congestus pux10® 3.9 1081076 12.7
Ll ]
¥ 3 Cumulonimbus 72x108 2.5 1081076 8.1
] 3 6
Z,"a °32,:"s°1 };"11’1
(=™3) (g a~3) (an® a73)
Continental
cumulus ug5aa0f 0.35 1.82x1073 13.2x078 12,4076 2.1x10°3 2.6u2™?
” Trade winj - of
4 cumalus 72.500° 0.81 5.3x1072 2652207 30.000°8 3.9x10"2 250372
3
& Hawaiisn dark
! stratus 23.3u06 0.335 u.om10™2 3h.0x10’6 3h.7uo'6 3.ux0~2 3.6x20"°
Hawailan orographic 5.2:106 0.523 1.3% 92.0:10.6 80.0110-6 1.0% 3.1%




Table 2.5 Cloud parameters by Diem.

Mus T }‘:u‘ 02 : -)F x, nf

Dien's cloud t pes Mg "} z (06 w3 Dy (m)
oy 0.32 1.18a07) 1.2a0%¢
x, 0.87 2.76x10"2 20.6x10™
w© 0.7 35307 10108
AS 0.28 2.40u20”3 12.8m07°
© 0.40 1.40m2072 23.ux207¢
sT 0.29 1.29u0°2 A0

Table 2.6 Cloud parameters by Breed.

el B Rigeh b ez (St

687 8.h 26 " .8 .0163

r 7.8 .as 7.2 78007
A 9.7 2 3.6 2.700°2
%3 9.3 2% »a 24072
LAY 9.9 21 %.3 2.9m0"2
559 9.7 hos 35.5 b.700"2
10k 71 .08 %.1 1.3a0°3
@ 8.3 o027 2.5 2.0m0)
209 8.1 083 2.7 s.8a0™)
2 9.5 3 ».9 2.610°2

Since the data do not support the shape parameters needed by the Deirmendjian
model, no direct comparison can be made between the Deirmendjian distribution and
the data sets. However, since (2.43) and (2.44) only depend on D, and m,, it is
possible to compare these models to the data for validation and, if one accurately
represents the data, use it to validate the Deirmendjian model. For these comparisons,
the data given by Weickmann-aufm Kampe and Breed must be discarded since the
reflectivity factor for these data were computed using (2.43). It should also be noted
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that the Diem data set is questionable since both (2.43) and (2.44) were derived using
Diem's measurements. Tables 2.7 and 2.8 present the comparison of the Diem and
Squires data with the reflectivity factor models (2.43) and (2.44).

Table 2.7 Comparison of data sets with reflectivity factor model (2.43).

Cloud Type Atlas Model (2.43)
Reflectivity Factor | Reflectivity Factor | Delta
Cloud Type (dB2) (dB2) (dB)
Diem:;
Stratocumulus -34.5 -36.2 -1.7
Altostratus -26.2 -28.2 -2.0
Stratus -18.9 -19.8 -0.9
Fair Weather Cumulus -29.3 -29.4 -0.1
Nimbostratus -18.5 -18.8 -0.3
Cumulus Congestus -15.6 -17.1 -1.5
Squires:

Hawaiian Dark Stratus -14.0 -14.7 -0.7
Continental Cumulus -27.4 -26.8 0.6
Hawaiian Orographic 1.3 0.2 -1.1
Trade Wind Cumulus -12.8 -14.1 -1.3

Table 2.8 Comparison of data sets with reflectivity factor model (2.44).

Cloud Type Atlas Model
Reflectivity Factor | (2.44) Reflectivity | Delta
Cloud Type (dB2) Factor (dBZ) (dB)
Diem:
Stratocumulus -34.5 -34.1 -0.4
Altostratus -26.2 -24.2 -2.0
Stratus -18.9 -23.9 -5.0
Fair Weather Cumulus -29.3 -23.1 -6.2
Nimbostratus -18.5 -21.1 2.6
Cumulus Congestus -15.6 -14.4 -1.2
Squires:

Hawaiian Dark Stratus -14.0 -22.7 8.7
Continental Cumulus -27.4 -22.3 -5.1
Hawaiian Orographic 1.3 -18.8 20.1
Trade Wind Cumulus -12.8 -15.0 2.3
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The fourth column, "Delta", indicates the difference in dB between the data sets and
the models. As seen from Table 2.7, (2.43) underestimates the data sets by < 2 dB,
while Table 2.8 shows (2.44) has as much as 20.1 dB of error. This implies equation
(2.43) models the reflectivity factor accurately for clouds defined by the Diem and
Squires data, characterized by D,<92 pum and m,,<0.87 gm-3, and thus will be used to
verify the Deirmendjian model.

Next the reflectivity factors were calculated from (2.43) based on the Deirmendjian
model and associated parameters as shown in Table 2.3. Since the data sets are only
valid for non-precipitating clouds, only the Deirmendjian water-clouds were used. The
values of D, must first be computed for each of the Deirmendjian water-cloud layers
for use in (2.43). This is accomplished by noting the water content can be expressed

as

rmax
m, = % x10° [n(yr’ar. g (2.45)
0

Making a change of variables with the relationship D=2r, the values of D, were
obtained by numerically solving for D, in the equation

D,
% x10° [n(D)D’dD=0.5. (2.46)
0

The values calculated for D, are given in Table 2.9.
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Table 2.9 Summary of Dy, Dmax, and reflectivity factor values for both the
Deirmendjian model and (2.43).

Atlas
Cloud mv Dmax Do Deirmendjian | (2.43)
Type (g/m3) (um) (um) (dBZ) (dBZ)
10-1(w) 0.15 200 53.8 -10.1 -12.2
14-1(w) 0.15 200 32.4 -18.5 -18.8
20-1(w) 0.25 200 32.4 -16.3 -16.6
20-2(w) 0.25 200 32.4 -16.3 -16.6
21-1C(w) 1 200 53.8 -19 4.0
21-1B(w) 2 200 53.8 1.2 -1.0
21-2D(w) 1 200 53.8 -1.9 -4.0
21-2C(w) 2 200 53.8 1.2 -1.0
21-2B(w) 1 200 53.8 -1.9 -4.0
21-3D(w) 2 200 53.8 1.2 -1.0
21-3C(w) 3 200 53.8 29 0.8
21-3B(w) 2 200 53.8 1.2 -1.0
22-1(w) 0.25 200 53.8 -7.9 -10.0
22-2(w) 0.25 200 53.8 -7.9 -10.0
25-1C(w) 0.5 200 53.8 -4.9 -7.0
25-1B(w) 1 200 53.8 -1.9 4.0
25-1A(w) 0.5 200 53.8 -4.9 -7.0
25-2C(w) 2 6000 498 35.4 28.0
25-2B(w) 1 6000 498 32.4 25.0
25-3C(w) 4 6000 250 29.5 22.1
25-3B(w) 2 6000 498 35.5 28.0
25-4E(w) 0.5 2000 274 19.3 14.2
25-4D(w) 1 2000 274 223 17.2
25-4C(w) 0.8 2000 274 21.4 16.3
25-4B(w) 0.5 2000 126 7.5 4.1
25-4A(w) 0.3 200 53.8 7.1 -9.2
26-1E(w) 3 6000 250 28.2 20.8
26-1D(w) 4 6000 250 29.5 22.1
26-1C(w) 8 6000 250 325 25.1
26-1B(w) 7 6000 498 40.9 33.5

With the values of D, computed, the difference between the Deirmendjian model and
(2.43) can be calculated. The results are illustrated in Figure 2.5, where the error is
defined as the reflectivity factor produced by (2.43) subtracted from the Deirmendjian
reflectivity factor (both reflectivity factors calculated in units of dBZ).
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Figure 2.5 Comparison of reflectivity factor generated by Deirmendjian water clouds with Atlas/Bartoff model

(2.43).



Table 2.10 summarizes the values shown in Figure 2.5 for all of the Deirmendjian
water-cloud layers. The 18 layers which produce the least error have the smallest
values of Dy, < 54 um. This is in agreement with the range of median diameters seen
in the data sets. Table 2.10 reveals (2.43) underestimates, by approximately the same
amount as the data (i.e., < 2 dB), the reflectivity factor computed by the Deirmendjian
model for small-droplet clouds. Thus, for the small-droplet clouds, the Deirmendjian
model accurately models the data.

Table 2.10 Summary of Atlas/Bartoff underestimation of Deirmendjian
water-cloud model reflectivity factors.

Number of Layers Underestimation Value of D,
18 2.2dB 54 um
4 52dB 275 um
7.4 dB 500 um

The layers with larger errors (cloud model numbers 25-2, 25-3, 25-4 and 26-1) have
considerably higher values of D, (see Table 2.9) and are highly questionable since
precipitation is known to occur with drop radii > 100 um [Sauvageot, 1992]. This
100 pum threshold would imply an upper limit to (2.42) of Dpax = 200 pm. To arrive
at values of Z within 2 dB of Z computed with Dyax = o for these large-droplet
clouds, Dpax had to equal 2000 or 6000 um. Although this is unrealistic for water
clouds, it is not of much concern since in the Rayleigh region (2.27) indicates the
extinction coefficient is proportional to the D3? while (2.32) indicates that the
backscatter coefficient is proportional to D6. This implies that as the droplet radii
increase, the backscatter cross-section becomes larger relative to the extinction
cross-section, and the SNR increases. Thus the system sensitivity is limited by the
small-droplet clouds. However these large-droplet cloud models also have increased
water content which will limit the radar's sensitivity to rain beneath these clouds
implying they can be used as a measure of how well the system can detect rain.

The range of values for Z within the 18 practical layers is -18.5 to 2.9 dBZ with D,
equal to either 32.4 or 53.8 um. A complete set of both Z and D, values is shown in
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Table 2.9. It is interesting to note that only two sets of model parameters (i.e., r¢, Cl,
C2, and m,,), with the exception of m,, are required for all 18 water-cloud layers. The
above analysis indicates that the Deirmendjian model accurately represents the
reflectivity factor for the thinner clouds, which is an important result given the
minimum system SNR will depend on the returns from such clouds.

2.2.2.2 RAIN LAYERS

The drop-size distribution for rain has been studied by several authors [Laws, 1943,
Wexler, 1948; Marshall, 1948; Best, 1950]. Among these, Law-Parsons and Marshall-
Palmer distributions are the most widely used and compare reasonably well with one
another [Ulaby, 1981]. Marshall and Palmer developed a drop-size distribution based
on measurements made at the ground surface for rainfall rates between 1 and
23 mmhr!. This distribution is given by

p(D)=N,e P, m (2.47)

where N, is a constant equal to 8.0x 10% m™, D is the drop diameter in meters, and
b is a variable related to the rain rate R, by the equation

b=4100R."*" (2.48)

Table 2.11 summarizes the comparison of the reflectivity factors generated with the
Deirmendjian rain-cloud distributions and the Marshall-Palmer distribution, using
(2.42).
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Table 2.11 Comparison of reflectivity factor for Deirmendjian rain-cloud
distribution and Marshall-Palmer distribution.

Deirmendjian Rain | Marshall-Palmer Rain

R, Cloud Reflectivity Cloud Reflectivity Delta

Cloud Type (mmhr'l) Factor (dBZ) Factor (dBZ) (dB)
21-1A(r) 0.2 7.2 14.4 -7.3
21-2A(r) 3 32.5 31.7 0.8
21-3A(r) 15 39.5 42.0 2.5
25-2A(r) 2.4 38.5 30.3 8.2
25-3A(r) 12 45.5 40.6 4.9
26-1A(r) 150 85.2 56.7 28.6

Table 2.11 shows that only the cloud types 21-2A(r) and 21-3A(r) are within 3 dB of
the Marshall-Palmer reflectivity factors, however, the first and last cloud type are not
within the Marshall-Palmer model rain rate limits: 1 to 23 mmhr!. Although an
uncertainty of 8.2 dB is large, ample SNR should be available from the rain returns at
the lower frequencies due to the DS dependence of Z. As seen in the previous section,
the large-droplet clouds (i.e., 25-2, 25-3, and 26-1) also provide excessive attenuation
which aids in minimizing the effects of the over-estimated values of Z shown in
Table 2.11.

The values for Dpax used in (2.42) are given in Table 2.12.

Table 2.12 Values of Dpax used in calculation of Table 2.11.

Cloud Type Dmax (1m)
21-1A(n) 400
21-2A(r) 4000
21-3A(r) 4000
25-2A(r) 6000
25-3A(r) 6000
26-1A(r) 50000

All values in Table 2.12 are reasonable with the exception of 26-1A(r), where
D max = 5 cm!
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2.2.2.3 ICE LAYERS

Ice crystals in clouds can attain sizes an order of magnitude larger than water droplets.
Hence, the reflectivity factor of an ice cloud may be several orders of magnitude larger
than that of a water cloud with the same liquid water content. Also, due to the
extremely small value of Im(-X) shown in Table 2.2, the attenuation in ice clouds is
negligible per (2.29). Because of these two factors, sufficient SNR should be
obtainable from the ice clouds. Table 2.13 presents the reflectivity factors obtained for
the Deirmendjian ice-cloud distributions using (2.42) and the listed values of Dpyax.

Table 2.13 Summary of reflectivity factor for Deirmendjian
ice~cloud distributions.

Deirmendjian Ice
Dmax Cloud Reflectivity
Cloud Type | (um) Factor (dBZ2)
1-A-1(1) 1000 6.2
1-M-1(i) 1000 6.2
1-T-1(i) 1000 6.2
26-1F(i) 1000 9.2

2.2.3 CALCULATIONS OF SNR

In the analysis of the SNR, six frequencies where evaluated; 94, 35, 24, 17, 14 and 10
GHz. Other parameters used in the SNR calculations were taken from the candidate
system shown in Table 1.3, with the following exceptions:

1 - the altitude used is 525 km in an effort to remain compatible with the

current design of the LAWS system,
2 - the transmitted power has increased to 6 kw,
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3 - a rectangular antenna, 8x8 meter, was used for all frequencies except 94
GHz where a 3x3 meter antenna was employed. The smaller antenna size
is required due to the manufacturing tolerances associated with an
antennas of dimensions > 1000A (@94 GHz, 1000\ = 3.2 m; @35 GHz,
1000A = 8.6 m). The same gain and beamwidth values can be obtained
with the 8 m diameter parabolic antenna but a rectangular antenna was
introduced to facilitate the possible use of an 2-D electronically scanned
array.

The gain of the antenna was calculated using the well known equation

G= %Ana (2.49)

where A is the physical area of the antenna, and ng is the aperture efficiency factor set
equal to 0.85. The beamwidths were determined from the equation

p= CBO% (2.50)

where o = 1.0693 and B, = 1.057 for a Taylor weighted -30 dB sidelobe level, # = 4
antenna [Johnson, 1984]. Table 2.14 summarizes the gains and beamwidths for each
of the frequencies studied. Note that the vertical and horizontal beamwidths will be
equal due to the square shape of the antenna.

Table 2.14 Summary of antenna gains and beamwidths.

Frequency | Antenna Size | Antenna Gain | Beamwidths
(GHz) (m x m) (dB) (mrad)
94 3x3 69.8 1.20
35 8 x8 69.7 1.21
24 8 x 8 66.4 1.76
17 8§ x8 63.4 2.49
14 8 x8 61.7 3.03
10 8 x8 58.8 4.23
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All SNR calculations were based on a nadir angle of 35°. This angle assures the worst
case scenario of the two nadir angles due to the increased slant range to, and within,
the clouds. The attenuation due to atmospheric gases was obtained by reading the
zenith, one-way, attenuation values from Figure 2.2 and using (2.33). For the 35°
nadir,

CSC(a)) = CSC(90° - 35°) = 1.221,

Table 2.15 summarize the two-way attenuation values used.

Table 2.15 Summary of atmospheric gas attenuation values.

One-Way Attenuation Total Two-Way
Frequency (GHz) (Figure 2.2) Attenuation from (2.33)
94 1.00 dB 2.44 dB
35 0.30dB 0.73dB
24 0.35dB 0.85dB
17 0.105 dB 0.26 dB
14 0.07dB 0.17dB
10 0.055 dB 0.13dB

The Propp SNR program was modified into two programs: one assuming the Rayleigh
approximation (SNRVER6.FOR) and the other using Mie scattering
(SNRVER7.FOR). Although all SNR data presented in this thesis are based on Mie
scattering, the Rayleigh approximation is satisfied when |ny| <0.5.

The values of the complex index of refraction for the water and rain clouds were
obtained by the use of the Debye equation [Ulaby, 1986]. This equation determines
the complex dielectric constant, €, versus temperature and frequency and is related to
n by (2.14). The value of n for the ice clouds was taken to be 1.78 - j0.003 per (2.23)
where the value for the Im(n) is set to a worst case value. Equation (2.17) is then
employed to determine |K]? and Im(-K) used in (2.29) and (2.32a) to obtain values for
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the volume-extinction coefficient and backscatter coefficient. Table Al and A2 in
Appendix A tabulate all volume-extinction coefficient and backscatter coefficient
values for both Mie and Rayleigh scattering used in the SNR calculations at each
frequency. For the two-way extinction coefficient, Table Al indicates that ice and
water clouds (water clouds with D3¢ <200 pum) satisfy the Rayleigh requirements for
all frequencies studied. Table Al also shows that only at the lower frequencies will
the rain conditions meet the Rayleigh criterion. For the backscattering coefficient,
Table A2 indicates that both ice and water clouds satisfy the Rayleigh condition for all
six frequencies and for the rain, up to 17 and possibly 24 GHz.

Finally, the volume-extinction coefficient and backscatter coefficient, in conjunction
with parameters from Table 1.3, 2.14 and 2.15 are used in (2.39) to generate the SNR.

2.2.4 RESULTS

Using the SNRVER7.FOR program, Figures Al to Al7 of Appendix A were
generated. These figures present the SNR versus altitude for each of the 17
Deirmendjian cloud types. Three of these figures are repeated in Figures 2.6, 2.7 and
2.38. '

As expected, Figure 2.6 shows that the ice clouds provide ample SNR. This is caused
by the larger ice particle diameters and negligible attenuation based on the small value
of Im(-K) for ice. Figure 2.7 shows a fair-weather cumulus cloud and illustrates the
layers generated by the Deirmendjian model. The higher frequencies appear to
produce sufficient SNR throughout the entire cloud. Figure 2.8 provides an example
of a cloud type containing rain. Again for the higher frequencies, a large SNR is
produced within the water portion of the cloud while all frequencies provide > 20 dB
SNR from rain return.

40



"SNJERSOLTY) ‘I-y-1 [opow pnojd vefpuauaq 303 YNS NN 9°Z 24nStq

ZHD 01 —— ZHD ¥1 —— ZHD L] —o— ZHD 2

ZHD ¢ —o— ZHD V6 —a—

(uny) apminry
8’6 9'¢ 14" A G 8V 9y vy A4 14
" " " “ t " “ " “ + 0
S
o1
O < < < <> < < < < < O <> < s <> —C—)
Gl
0¢
O O O O O~ ) L {r O O . " O { > nIr
G¢C
——— - - - - - - - - - - il - - - el Om
£, w3 10 =Aw
Zapr29=727 Gs

LS|

(dp) ANS

41



'SNWN)) JAYIEIM JIe] ‘T-GZ {[opow projd uelfpuauta( J0j YNS N L°Z 2anSig

ZH9 01 —— ZHO¥] —— ZHD L] e ZHD V€ —t— ZHD S —g—= ZHD V6 e

(wry) spmnry
| 44 6’1 LT S'1 €1 'l 6’0 L0 S0
} $ i i } t 1 G-
0
v > % 7 @
S
< e O e o5 x » = — O e O —
o= o EEE— == o1
o— - ~—C0—
€ w3 g = Aw
2dP6v-=Z
e Buma MN
£.u/3 60 = Aw €.W/3 0] =Aw
ZaP 6v- =27 Z2dP61-=7
RIEM R 0€

(dP) ¥NS

42



"Jy/unu ¢ ‘utey Apeals ‘z-1¢ :[9pow pnopo uelfpusuina( 103 YNS A 8°Z 94nSig

ZHO 01 —g— ZHD $T —o— ZHD Ll —o— ZHD ¥ —s— ZHD $¢ —o— ZHO V6 —a—o

urey

(uny) apranry
€0 0
- — 0
o1
o .
= 0z
» —2 0f
c.w/@ o =Aw €. w/3 oHN =AW c w301 =AW | .
ZaP6'1-=Z zae1'i=12 ZaP61-=2
1M oA REM — OV
L
0S
€ .w/@z0=Aw
zapzee =7 H 09

(gP) ANS

43



To choose an optimal frequency, some form of presentation was required to compare
all cloud types for each frequency, simultaneously. To this end, each cloud layer at
each frequency was threshold detected and the results displayed in a table format.
SNR thresholds of 5, 10, 15 and 20 dB were used to create Tables 2.16, 2.17, 2.18,
and 2.19. These tables show for which frequency a cloud layer exceeds the threshold
(indicated by a "X"), cross the threshold (indicated by a "P"), or is below the threshold
(indicated by a "-").

As can be seen in these tables, the SNR from the rain layers is sufficient for the lower
frequencies even with the 20 dB threshold, with the exception of the light rain (drizzle)
of model 21-1. This was predicted in section 2.2.2.2. The discussion of ample SNR
for ice clouds in section 2.2.2.3 is also realized in that these clouds produce sufficient
SNR even at the 20 dB threshold with 94 or 35 GHz. The statement that the thinner
clouds set the lower limit on the system SNR sensitivity can also be seen in these
tables. The large-droplet clouds (25-2, 25-3, 25-4 and 26-1) even exceed the 20 dB
SNR threshold, indicating they are not significant to the determination of the lower
SNR limit. The clouds most instrumental in determining the minimum SNR are the
Altocumulus (10-1 and 14-1) and the Low-Lying Stratus (20-1 and 20-2). Due to
their minimal water content (0.15 and 0.25 gm™), these clouds exhibit the smallest
values of reflectivity factor (as low as -18.5 dBZ) as compared to the other cloud
types. Only the 94 GHz frequency achieves a > 10 dB SNR for these clouds. This
implies the 94 GHz frequency is required to provide adequate SNR for the thinnest
clouds. If only one frequency is utilized, 24 GHz gives the best overall performance.
The combination of 94 and 24 GHz provides the best overall two-frequency
performance.
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Table 2.16 SNR threshold of 20 dB.

Cloud

Cloud Name

94 GHz

35 GHz

24 GHz

1-A-1(0)

Cirrostratus

1-M-1(i)

Cirrostratus

1-T-1(i)

Cirrostratus

10-1(w)

Altocumulus

14-1(w)

Altocumulus

20-1(w)

Low-Lying Stratus

20-2(w)

Low-Lying Stratus

21-1C(w)

Drizzle, 0.2 mm/hr

21-1B(w)

21-1A(@)

21-2D(w)

Steady Rain, 3 mm/hr

21-2C(w)

21-2B(w)

21-2A()

21-3D{w)

Steady Rain, 15 mm/hr

21-3C(w)

21-3B(w)

21-3A(n)

22-1(w)

Stratocumulus

22-2(w)

Stratocumulus

25-1C(w)

Fair Weather Cumulus

25-1B(w)

- I -1

i

25-1A(w)

25-2C(w)

Cumulus, 2.4 mm/hr

o

25-2B(w)

25-2A(r)

25-3C(w)

Cumulus, 12 mm/hr

~

25-3B(w)

ia-Yia-d FO R RS LY

25-3A(n)

25-4E(w)

Cumulus Congestus

25-4D(w)

25-4C(w)

Pe e et

it eI AT K

SIRIIFIEIEI MBI

P b R b IR

25-4B(w)

bt

PR BRI R IR

25-4A(w)

26-1F()

Cumulonimbus, 150 mm/hr

26-1E(w)

26-1D(w)

e IESE R

- TE K

26-1C(w)

|4

26-1B(w)

26-1A(r)

»

e IE IR

eI
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Table 2.17 SNR threshold of 15 dB.

Cloud Cloud Name 94GHz | 35GHz | 24GHz | 17GHz | 14GHz | 10GHz

1-A-1() Cirrostratus

1-M-1(i) Cirrostratus

1-T-1(i) Cirrostratus

b b B
>

10-1(w) Altocumulus

14-1(w) Altocumulus

‘
'
1
'
0

20-1(w) Low-Lying Stratus

20-2(w) Low-Lying Stratus

21-1C(w) Drizzle, 0.2 mm/hr

21-1B(w)

FIE K

21-1A(0)

21-2D(w) Steady Rain, 3 mm/hr

i)

x [

21-2C(w)

21-2B(w)

21-2A(r)

] B et IR K

Ak

||
e
»
>

21-3D(w) Steady Rain, 15 mm/hr

21-3C(w)

21-3B(w)

21-3A(r)

22-1(w) Stratocumulus

22-2(w) Stratocumulus

25-1C(w) Fair Weather Cumulus

Pt Ll B

25-1B(w)

25-1A(w)

25-2C(w) Cumulus, 2.4 mm/hr P

25-2B(w) -

25-2A(r) -

25-3C(w) Cumulus, 12 mm/hr P

25-3B(w) -

25-3A(r)

25-4E(w) Cumulus Congestus

25-4C(w)

BB B Bt b E b b B e e EH BB E
et bt B b B B
b e E E IR e P
bt b LI T EIE
b e e

X
25-4D(w) X
X
P

25-4B(w)

25-4A(w)

'
’
'

26-1F(i) Cumulonimbus, 150 mm/hr X
26-1E(w) P

26-1D(w) -

PP
I IR E

26-1C(w) -

26-1B(w) -

(o]
bt At R
EIE R EESK

26-1A(r) -
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Table 2.18 SNR threshold of 10 dB.

Cloud Cloud Name 94GHz | 35GHz | 24GHz 17 GHz 14 GHz 10 GHz
1-A-1() Cirrostratus X X X X - -
1-M-1() Cirrostratus X X X X - -
1-T-1(1) Cirrostratus X X X X - -
10-1(w) Altocumulus X X - - - -
14-1(w) Altocumulus X - - - - -
20-1(w) Low-Lying Stratus X ) : - - -
20-2(w) Low-Lying Stratus X - - - - -

21-1C(w) Drizzle, 0.2 mm/hr X X X P - -
21-1B(w) X X X X - -
21-1A(r) X X X X X -
21-2D(w) Steady Rain, 3 mm/hr X X X P - -
21-2C(w) X X X X - -
-21-2B(w) P X X - - -
T 21-2A() X X X X X X
21-3D(w) Steady Rain, 15 mm/hr P X X X - -
21-3C(w) - P X X - -
21-3B(w) - - - - - -
21-3A(r) - X X X X X
22-1(w) Stratocumulus X X - - - -
22-2(w) Stratocumulus X X - - - -
25-1C(w) Fair Weather Cumulus X X X - - -
25-1B(w) X X X - - -
25-1A(w) X X X - - -
25-2C(w) Cumulus, 2.4 mm/hr P X X X X X
25-2B(w) - X X X X X
25-2A(n) X X X X X
25-3C(w) Cumulus, 12 mm/hr X X X X X
25-3B(w) - X X X X X
25-3A(r) - X X X X X
25-4E(w) Cumulus Congestus X X X X X X
25-4D(w) X X X X X X
25-4C(w) X X X X X X
25-4B(w) X X X X X X
25-4A(w) - X X - - -
26-1F(i) Cumulonimbus, 150 mm/hr X X X X X -
26-1E(w) P X X X X X
26-1D(w) - P X X X X
26-1C(w) - - P P X X
26-1B(w) - - - X X X
26-1A(r) - - - X X X
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Table 2.19 SNR threshold of 5 dB.

Cloud

Cloud Name

94 GHz

35 GHz

24

1-A-1(i)

Cirrostratus

1-M-1()

Cirrostratus

1-T-1(i)

Cirrostratus

10-1(w)

Altocumulus

bl Bt bad o] 12

14-1(w)

Altocumulus

20-1(w)

Low-Lying Stratus

20-2(w)

Low-Lying Stratus

21-1C(w)

Drizzle, 0.2 mm/hr

21-1B(w)

21-1A(n)

21-2D(w)

Steady Rain, 3 mm/hr

21-2C(w)

21-2B(w)

21-2A(r)

21-3D{w)

Steady Rain, 15 mm/hr

0 BT BRIt B E P o P B B B ) P

21-3C(w)

21-3B(w)

21-3A(n)

e E e B B BRI EE

e Ll Cd bt B b b I K

22-1(w)

Stratocumulus

22-2(w)

Stratocumulus

25-1C(w)

Fair Weather Cumulus

25-1B(w)

x [

25-1A(w)

25-2C(w)

Cumulus, 2.4 mm/hr

o P eI ®]
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CHAPTER 3

MEAN-FREQUENCY ESTIMATION, RADAR
AMBIGUITIES AND TRANSMITTED WAVEFORM

3.1 WEATHER ECHO AND POWER SPECTRAL DENSITY

A vector summation of the scattered electric fields from a large number of particles
defines the weather radar echo. The voltage received from such an echo is given by

N
V=3Ve G.D

i=0

where V; and R; are the voltage and range corresponding to the /' scatterer, & is the
wavenumber (k=2n/A), and N the total number of scatterers. Due to the random
position of the scatterers, the phase, j2kR;, will be random in nature and assumed
uniformly distributed over the range [0,21]. The central limit theorem states the sum
of »n independent identical distributed random variables tends to have a limiting
(as n — o) distribution that is Gaussian with a mean equal to the sum of the individual
means and a variance equal to the sum of the individual variances. Hence, the
resultant voltage, ¥, will tend to have a Gaussian distribution [Shanmugan, 1988]. For
weather echoes, the individual means equal zero, i.e.,

2n
E{V,.}ﬁ je™ R =0, i=0,1,2,,N  (32)
]

which implies E{V} = 0. Thus, weather echoes will have a Gaussian probability
density function with zero-mean and a variance determined by the sum of the variances
of the individual scatterers.

An important function used to characterize radar returns is the power spectral density

(PSD). The PSD is a function of a number of factors including the reflectivity,
illumination factor (defined by the antenna pattern and range weighting functions),
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turbulence, and wind shear. For uniform reflectivity and uniform shear, the PSD shape
is largely determined by the illuminating factor, assumed Gaussian. The spectrum's

. 2 . . . . .
variance, O, i1s considered the sum of the variances contributed by wind shear,
antenna motion, turbulence and other factors [Doviak, 1984]. Figure 3.1 illustrates
the received echo power spectral density S(v).

S(v) *

v v
Figure 3.1 Radar return Doppler spectrum.

Knowledge of the PSD allows determination of other parameters such as the received
power, mean velocity and velocity spectrum variance. The zero moment of S(v) yields
the received power:

B, = [S()dv. (3.3)

The mean velocity is given by the first moment of the spectrum,

j vS(v)dv

=4 7 4
Y jS(v)dv’ (3.4
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and the spectrum variance is obtained from the second central moment,

2 [o-9)Smav
G =

35
y j S(v)dv @3:3)

where o is the velocity width. The first and second moments are analogous to the
expected value and variance, respectively, with a non-normalized probability density
function S(v) [Skolnik, 1990]. Substitution of the equation

f== (3.6)

produces solutions of (3.3), (3.4) and (3.5) in terms of the Doppler frequency. When
used in weather observations, the zero moment, or echo power, can be an indicator of
liquid water content or precipitation rate in the resolution volume. The first and
second moments allow for the measurement of the mean velocity and spectral width of
the returned signal.

Several moment estimators have been developed to estimate accurately the values
given by (3.3), (3.4) and (3.5). In most cases, the return signal is digitized into
complex components, I (in-phase, real) and Q (quadrature-phase, imaginary). The
use of the fast Fourier transform (FFT) can then provide an estimate of the Doppler
spectrum. Xin studied the FFT, auto-regression and covariance estimators to
determine the most accurate mean-frequency estimator. He concluded that a
covariance estimator (or pulse-pair estimator) produces the least error for a symmetric
PSD [Xin, 1990]. The mean estimate given by the covariance estimator is an unbiased
estimate of the signal mean even with low values of SNR for symmetric spectra. The
mean-estimate bias due to non-symmetric spectra has been studied and shown not to
be a serious problem for the covaniance estimator [Sirmans, 1975]. The next section
concerns the development of the covariance estimator.
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3.2 COVARIANCE ESTIMATOR

The autocovariance of a random variable X(#), is defined as
Cxx(h,13) = Ry (1, 1,) — Wy (1) D1y (12) (3.7

where R xy is the autocorrelation of X(7) given by

Rye(1,1,) = ELX (1) X(0)} = | X (0)X() /(4 1p)dndt,,  (3.8)

Sf(t1,12) being the joint probability density function, and py the expected value of X{(¢).
If the autocorrelation depends only on a time difference (i.e., #1-72) and the mean is
independent of time, the process is considered wide-sense-stationary (WSS) and (3.8)
becomes

Ry () = EQX (DXt + )} = | X ()Xt +7) f(v)at, (3.9

with py equal to a constant [Shanmugan, 1988]. As mentioned in section 3.1, the
weather return signal is statistically Gaussian with zero-mean, py=0; thus from (3.7),
the autocovariance equals the autocorrelation. With this, another important property
of WSS processes, based on the Wiener-Khinchine relationship, can be utilized. This
relation states the autocorrelation function can be obtained from the inverse Fourier
transform of the power spectral density:

R ()= F 'S (M = [Sx(Nexp(2nf)df.  (3.10)

In a radar application, the autocorrelation is obtained from the sampled returns. Each
range gate will produce a sequence of complex video samples V(kT;), where T is the
pulse repetition time. Each sample can be written as

V(KT,) =V, +ny, k=0,1,.., L, (3.11a)
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or, V(kT) = 5,4 +n,, k=0,1,.., 1L, (3.11b)

where V is the weather echo sample given by (3.1) for range gate k, s is the weather
echo sample with spectra centered at zero, ny is the white noise sample, and L is the
total number of range gates. Both s; and n; are zero-mean Gaussian processes.
Letting S be the average signal power and p the normalized correlation function, the
autocorrelation function of the process V{(kT5) is

R(mTs) = E{V'(kTy) VI(k+m)Ts]} = Sp(mT)e/%a™ s + NpBp,  (3.12)

where N, is defined as the mean white noise power. The difficulty in determining the
autocorrelation using (3.12) is in obtaining the normalized correlation function. An
alternative approach is to utilize (3.10) and the PSD. The Doppler spectrum will have
a Gaussian shape, as discussed in section 3.1, of the form

2
S(v) = ("‘vz) J+2NPT‘. (3.13)

S
J2n)o, [ 20, A

Substitution (3.13) into (3.10), yields
2] ., _
R(mT,) = Sexp{—s(ﬂi"ﬁ) }e’ mvmIsih Npbpm. (3.14)

A comparison of (3.12) and (3.14) identifies the correlation function as

2
p(mT) = exp{—8(mTS"’Ts) } (3.15)

It is easy to see that the mean velocity can be obtained from the argument of (3.14):

dnvmI
l 3

arg[R(mT s )] = (3.16)
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or, solving for v and lettingm =1,

v=(A/4nT,)arg[R(T,)), (3.17a)
and f=(Q/2xT)arg[R(T,)]. (3.17b)

Equation (3.17) constitutes the covariance mean-frequency estimator and can be
interpreted by reviewing the operation of an FFT. Figure 3.2(a) illustrates the
continuous Doppler return from a target and the associated complex radar 1&Q
samples. Each of these samples contains amplitude and phase information of the
return signal and they are spaced 75 seconds apart. The diagrams in Figure 3.2(b)
depict a rotating phasor produced by the sequence of N 1&Q samples.

The phasor produced by the 1&Q data will rotate at an angular frequency of A¢
radians per 75 seconds:

mdz%, (3.18a)
A
or, fa= an} ) (3.18b)

The FFT, simply stated, creates a digital bank of N phasors each rotating at different
rates corresponding to a particular frequency. A comparison is then made between
each FFT phasor and the phasor defined by the N 1&Q samples. If the 1&Q phasor
correlates well with a particular FFT phasor, the output of that bank (or frequency bin)
is large, conversely if there is poor correlation, the output is small. Thus, the output of
the FFT bins will produce the spectrum of the I&Q input data. The covariance
estimator determines the mean-frequency by calculating the change in phase, A¢,
between successive samples, and then uses (3.18b) to obtain the frequency. A
comparison of (3.18b) and (3.17b) reveals the argument of the autocorrelation
function at time lag 7', is equal to the change in phase over the time interval Ts. This
is not surprising since the autocorrelation function by definition yields the differences
between a function and itself translated in time (see equation (3.9)). For the
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covariance estimator, the time between samples need not be uniform. Figure 3.3
depicts the same process shown in Figure 3.2 for a non-uniform sampling interval.

One advantage of the covariance estimator is the returns only need to be correlated for
a shorter time (i.e., 75) as compared to the FFT process that requires correlation

during the entire look (i.e., NT5).

Although (3.17) implies the frequency can be determined from only two samples (one
pulse-pair) of the returned signal, the variance of such a measurement would be
unacceptable. A large number of independent samples (a sample here being one A¢
measurement) is necessary to provide an acceptable mean frequency variance. If the

. . . ~?
samples are independent, the estimated variance, 6, decreases as
~2

o

2
c
—, 3.19)

v, (

where 67 is a single sample estimate variance, and M is the number of independent
samples. However, because correlation can exist between samples, (3.19) does not

always hold. The effective estimate-variance reduction factor for M samples is given
by [Doviak, 1984]

6 1 M1 M —|m|
T CO N CED

A perturbation analysis has been derived for the variance of the mean velocity for the
pulse-pair estimator. The condition required for this analysis to be valid are:

AnMo T >>1, 3.21)
A
P (T)M >> (N/S+1)%, (3.22)

and the power spectral density is Gaussian. Condition (3.21) expresses the
requirement for a large number of independent samples, while (3.22) ensures that the
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argument of R(T) has a distribution width small compared to 2. If these condition
are valid, and 7T5<7, the variance of the mean velocity can be expressed as

var (9) = 7~2[3Z7t2M92(Ts)7s2]_1{([1-pz(Ts)]l) /(4osT~/E)

+N*/S? +2(N/S)} (3.23)

where T and T are defined in Figure 3.3 [Doviak, 1984]. As will be shown in the next
chapter, the determination of the variance plays an important role characterizing the
antenna scan pattern.

3.3 RADAR AMBIGUITIES

To determine the limits for 75 and 7, the range and velocity ambiguities must be
analyzed. Continuous wave (CW) radars measure all Doppler frequency returns
unambiguously but not range. Pulse-Doppler radars provide simultaneous range and
velocity measurements but have a Doppler aliasing ambiguity based on the Nyquist
sampling rate. The unambiguous range for a coherent pulsed radar is given by

T,
2

R, = (3.24)

where c is the speed of light. Returns from ranges greater than R, are received as
multiple trip returns and are overlaid with echoes from targets within R, = ¢ Ts/2.

Doppler frequencies are ambiguous because one cannot distinguish between the real
Doppler shifts and those aliases spaced in frequency by the pulse repetition frequency
(PRF). To be unambiguous in frequency, the Doppler frequencies must adhere to the
Nyquist criterion:

f, == (3.25a)

2T,

s
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A

or in terms of velocity, V, =% AT (3.25b)
Thus the range-velocity product,
RV=%, (3.26)

specifies the ambiguity resolution capabilities for a conventional (i.e., uniform pulse
spacing) Doppler radar. It is desirable to choose a large value of T to eliminate
second and higher order trips. However, the sampling rate is limited in that the
samples must remain correlated for precise Doppler shift measurements. Correlation
exists when [Atlas, 1964]

A >>0g (3.27)
2T;

where o is the velocity-spectrum width defined as the square root of the spectrum's
second moment (3.5). Condition (3.27) indicates that the Doppler width must be
much smaller than the Nyquist interval, A/2 T, to prevent aliasing, where the Nyquist
interval limits the maximum radial velocity, V,,-. What is more significant is the effect
of the sampling rate on the variance of the estimate. The variance given in (3.23)
reduces to

NOsis 2
] M[@ T5/1)? |

var(v) ~ S SJEMT

, (3.28)

for large values of SNR [Zrnic, 1977]. Evaluation of (3.28) reveals that

4dno T

<1 3.29
x (3:29)
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is necessary to prevent the variance from increasing exponentially. This results in a
sampling limit of

A 2270, (3.30)

as a condition to maintain signal sample correlation [Zrnic, 1977]. Comparing (3.30)
with (3.27) indicates sampling at (1/2r) of the Nyquist rate (A/2 7. s) may allow for a
tolerable variance. It is important to realize violating (3.30) does not necessarily
produce unacceptable results; it merely implies a rapid decrease in correlation and an
exponentially increasing variance.

3.4 TRANSMIT WAVEFORM

The modulation pulse-pair waveform developed by Xin consists of the first pulse in the
pulse-pair being up-chirped while the second is down-chirped. The chirp modulation
allows for a lower peak power requirement and extends the unambiguous range of the
pulse-pairs. Figure 3.4 presents this waveform and Figure 3.5 illustrates a receiver
block diagram capable of decoding such a waveform.

N T
—» l— Tg
T —» — —1 — T
A N NN o
— TR — Time

Figure 3.4 RAWS modulated pulse-pair waveform.
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Figure 3.5 RAWS receiver block diagram [Xin, 1990].

Since the receiver can distinguish between the first and second pulse of the pulse-pair,
the unambiguous range increases from that given in (3.24) to:

cTl
R, = (3.31)

However, if the receiver is unable to receive radar echoes during the transmission of
the second pulse, the unambiguous range will decrease to:

_ T

R==E (3.32)

Transmitting each pulse of the pulse-pair on either different frequencies or with a
unique polarization may be used to allow the receiver to receive echoes during the
transmission of the second pulse, thus extending the unambiguous range to (3.31).
However, by changing frequencies, the phase difference, A, may be erroneous
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(depending on the amount of frequency change) since the phase reference will have
changed from the first to second pulse based on (3.1). That is, if the values of R; are
only a function of the relative motion between the satellite and the cloud, (3.1)
indicates, although the resultant phase will be random, successive resultant phases will
only shift by the amount corresponding to the Doppler frequency (i.e., Ad in Figure
3.2). However, if the frequency is allowed to change, the resulting voltage becomes

N
V=3Ve*®  f=1and2, (3.33)

i=0

where k;=2n/A, is the wavenumber corresponding to the first transmitted frequency
and k,=2mn/A, for the second frequency. In this case the first pulse will correspond to
the resultant phase based on &; while the second pulse will be dependent on £,. The
change in wavenumber will define a new random resultant phase for the second pulse
that is not simply a function of the Doppler frequency and %,, but also of the second
frequency (k;=2m/A;). Unless this phase relationship is measured, the Doppler
frequency can not be extracted.

The unambiguous range is determined from the maximum cloud penetration
requirement derived from the target volume coverage and antenna pointing angle given
in Table 1.3. Since the unambiguous range is known, the value of 7g can be computed
by solving equation (3.32) for 7g. This yields

Ix= & (3.34a)
c
or, 1 = 2h, , (3.34b)
ccosO

where A is the maximum cloud height, c is the speed of light, and © is the nadir angle.
From Table 1.3, we find A, = 20 km, and for worst case, 6 = 35°. Thus,

T, =162.8usec. (3.35)

The minimum value of T is determined by the amount of time required to switch
between the pulses within the pulse-pair and the time associated with the pulsewidth
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(see Figure 3.4). A choice of 5 psec is used in this analysis for the switch time. The
pulsewidth is given in Table 1.3 as 20 usec, resulting in

T¢=20+5=25 usec. (3.36)
The time between sample pairs, 7, can be obtained from

T= TS +1T+ TR
=25+20+ 162.8 = 207.8 psec. (3.37a)

Solving for the pulse repetition frequency (PRF),

or, PRF = 1/T ~ 4800 Hz (3.37b)
One of the major advantages of the covariance estimator is that the unambiguous
range is a function of 7p while the unambiguous velocity is a function of 7. This

allows for independent control of the range and velocity ambiguity limits.

With the value of 7 determined, the spectral width can be calculated using (3.30). At
94 GHz,

05 < 10.2 msec!, (3.38)
Data from severe storms show a median spectral width of 4 msec” and only 0.5% of
measured widths are larger than 10 msec!. Figure 3.6 illustrates the cumulative

probability of the total spectrum width [Doviak, 1984].

The maximum radial velocity can be computed using the Nyquist criterion (3.25) and
(3.36). At 94 GHz,

Vir < #32.1 msec’l. (3.39)

The maximum horizontal and vertical velocities are obtained by dividing V,,,, by cos6
and sinb, respectively, and are shown in Table 3.1 for 6 = 35°.
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Table 3.1 Summary of maximum velocity components.

Velocity Maximum Velocity at
Component 94 GHz
Vink +39.2 msec™!
Vv 456.0 msec’!

Figure 3.7 shows the cumulative probability of the wind velocity for three tornadic
storms. As can be seen, only 5% of toradic clouds have wind velocities that exceed
those shown in Table 3.1.

Different values of 75 can be used when operating at a frequency other than 94 GHz.
The above analysis used 94 GHz as worst case, and appears to provide adequate
coverage of the Doppler spectral width, o5, and the maximum Doppler extent, V),
even in tornadic storms.
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Figure 3.6 Cumulative probability of the total spectrum width and the width

due to linear radial velocity shear and turbulence [Doviak, 1984].
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Figure 3.7 Cumulative probability of absolute Doppler velocities in three
tornadic storms [Doviak, 1978].
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CHAPTER 4

MEASUREMENT ERRORS AND ANTENNA SCAN
PATTERN

4.1 BASIC EQUATIONS

The observed Doppler frequencies at three separate antenna positions produced by the
wind vector

thy =ty X + 1y + Uy, 2, 4.1

are given by the dot product

£ =2%F, i=1,2,3 (4.2)

where A is the wavelength, and 7; the antenna pointing vectors. The pointing vectors

have the form
F; =sin0; cos; X +sin 6, sin ¢;y — cosH;z, i=1,273 (4.3)
with nadir angles 6;, and azimuth angles ¢; as defined in Figure 4.1.

Note X, y, and Z are unit vectors. In terms of Doppler velocities, (4.2) becomes

Ugi = iy, T i=1,2,3 (4.4)

i

or in matrix form

u; =Au,, 4.5)
where ug is the measured velocity vector, u,, the wind vector, and A the matrix
defining the antenna pointing geometry. Specifically;
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Ugy Uyx
Ug={ug2 |, u,, = uwy s

Ugs Uy

sinBycos¢; sinBysing; —cosb
and A =|sinBjcosd; sinBysind; -—cosh, |. (4.6)
sinB@3cosd; sinB3sind3 —co‘s93

Solving (4.5) for u,, allows the wind vector components to be determined from the
measurements u .

Figure 4.1 Antenna pointing vector coordinates.
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4.2 MEASUREMENT ERRORS

There are three major sources of error in determining the wind speed: estimator errors
in computing the mean-velocity, antenna pointing errors, and errors associated with
tracking the mean-Doppler frequency caused by satellite motion. Only the estimator
and antenna pointing errors will be analyzed in this thesis. These errors will be used in
section 4.3 to examine the performance of several scan patterns.

4.2.1 VELOCITY UNCERTAINTY

The velocity uncertainty error is based on the ability of the covariance estimator to
estimate accurately the mean velocity of the return weather echoes. Introducing a
velocity uncertainty error, Auge, into (4.5) yields:

ugz +Augy, = A(u,, +Au,,),
which implies, Au,, = A"lAude, 4.7)

where Auy, is the resulting wind error. Equation (4.7) is valid only if the matrix A is
non-singular (i.e., |A| # 0 and A # o).

For the antenna scan pattern analysis, the velocity uncertainty Aug, is defined as the
measurement accuracy for the covariance estimator given by (3.23). Using (3.23) with
the waveform parameters defined in chapter 3, several standard deviation
(O oo = y/var()) versus spectral width plots were generated as a function of the SNR.

Figures 4.2 (a), (b), and (c) illustrate these plots for various values of M at 94 GHz
with T5=25 psec and 7 = 210 usec, and Figure 4.3 for M = 1024 at 24 GHz with
Ts=50 psec and 7 = 250 psec. Studying Figures 4.2 (a), (b) and (c) one is able to

. | .
verify that the standard deviation decreased as W given by (3.19). The maximum

spectral width used is 10 ms! as defined by (3.38).
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A value of Aug, = 0.2 ms™ is chosen for use in the scan pattern analysis. Both Figures
4.2 and 4.3 indicate that a 1024 pulse-pairs are required to achieve such a standard
deviation. For water-clouds providing 10 dB SNR, Figure 4.2 justifies the use of
94 GHz to reach the 0.2 ms! limit, while for rain-clouds, 20 dB SNR is required at
24 GHz.

A Monte Carlo simulation program was written to model (4.7). A Gaussian
probability density function with a standard deviation of 6oy Was used for values of
Auge. The elements of the A matrix are specific to the geometry of the particular scan
pattern being analyzed. Results from this program appear in section 4.3.

4.2.2 ANTENNA POINTING ANGLE UNCERTAINTY

Some radar applications require the antenna to be adjusted during the time-on-target
(TOT) to eliminate the effects of decorrelation. Decorrelation is caused by the
illumination of different portions of the target, in this case a cloud, which produces a
change in the phase reference during the signal processing period. To minimize the
effects of decorrelation, the antenna beam is adjusted to maintain the same beam
position on the cloud during the TOT. This antenna adjustment, however, produces
velocity errors in that M A matrices will exist but only one will be used to determine
uy, per (4.5).

For a covariance estimation based system, decorrelation is not a concern since, as
discussed in section 3.2, each of the sample pairs is phase independent. However, if
the scan rate and/or the radar's velocity is too great, the sample pairs used to compute
the mean-velocity will originate from separate points on the cloud, thus measuring
separate wind vectors and producing a velocity error. This implies the antenna must
be adjusted to maintain the beam at a single point on the cloud. Since the maximum
movement of the beam due to the satellites velocity is only 1.5 km at 0° azimuth
(worst case), corrections to the nadir angle will be ignored. Unless a very slow scan
rate is used, an azimuth squint angle will be required. An electronically scanned squint
angle will be assumed in the azimuth direction only.
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Referring to Figure 4.4 one sees that at time t = 1 the azimuth angle is ¢; while at t = 2
this angle must change to ¢, assuring a common beam position at position P.

Figure 4.4 Antenna pointing error diagram.

To determine the error associated with these two measurements, the following
equations are given
ugp = Ay,

. (4.8)
ugzz = Asu,,

The pointing error will occur since the wind vector will be determined from both sets

of Doppler velocities (i.e., ugy and ug) but only one geometry matrix, A1, is used to
determine u,, per (4.5). Thus the wind error will be
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Uye = AIl“d2
Au,, =u,, —u,, (4.9)

Auy,, =u,, —A1°1A2uw

where uy. is the wind vector generated by using the second velocity estimate, ugy,
and the first geometry matrix A,. Subtraction of u, from the wind vector results in
the wind error Au,,. Note that (4.9) indicates that the wind error is a function of the

wind vector u,,.

A simulation program was written to determine Au, given the geometry of both
antenna pointing vectors and a wind vector. Given the original geometry matrix A,,
A, can be obtained by determining ¢, based on the satellite's velocity from the
equation

b, = sin"l(RR'ﬂ) (4.10)

| — VI cosd,

where R is the slant range of the first vector, v the satellite velocity, and ¢ is the TOT.
The program solves (4.9) by computing the maximum value of Au,, for a complete set
of wind vectors and given values of ¢; and |uy|. The program then repeats this
process for additional azimuth angles until all angles have been analyzed.

4.3 ANTENNA SCAN PATTERN

The antenna scan must allow for enough time-on-target to provide for an accurate
mean-velocity measurement while allowing for muitiple independent looks at the same
cloud position. This section analyzes three antenna scan patterns to determine the
pattern which produces the least measurement error.
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4.3.1 CONICAL ANTENNA SCAN PATTERN

The conical scan originally proposed by Xin [Xin, 1990] is shown in Figure 4.5. This
scan allows for four looks at given locations along a path parallel to the velocity vector
and produces a "corkscrew" pattern on the ground (see Figure 4.9). Figure 4.6
illustrates these same four vectors relative to the satellite at four specific times and
their ability to intersect at a point. To determine the wind velocity, measurements
must be taken with at least three vectors intersecting the same point.

A set of equations given by (4.5) and (4.6) can be written based on the nadir and
azimuth angles shown in Figure 4.5. Solving (4.5) for u,, however, one finds a
singularity of the matrix A (i.e., the determinate of A, |A|, = 0) for a flat earth. At the
singularity, A" = o implying u,, cannot be determined. The cause of the singularity is
obvious since in 3-dimensional space three or more co-planar vectors are linearly
dependent. Likewise in 2-dimensional space, two or more co-linear vectors are
linearly dependent. Figure 4.7 shows all four antenna position vectors as being
co-planar.

Since the satellite must fly parallel to a given point on the cloud, the vectors to that
point will always be co-planar! If we look at the more realistic case of a curved earth,
one finds the singularity is eliminated, but the vectors are still close to being co-planar,
resulting in a large velocity uncertainty error. That is, as the vectors approach
becoming co-planar, |A] — 0 and A"! — .

To eliminate the singularity and decrease the velocity uncertainty error, another
approach is necessary. Figure 4.8 shows the same scan pattern given in Figure 4.5
with the exception that the three vectors are not co-planar. Prudent selection of the
offset values AX1 and AX2 will guarantee a non-singular A matrix.

The disadvantage of using the offsets is that the vectors no longer intersect the same

point on the cloud. This is only critical if the wind vector is not homogeneous over
the offset distance. Due to the two nadir angles used in the conical scan pattern,
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Figure 4.5 Originally proposed antenna scan.
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Figure 4.6 Antenna scan as seen by satellite.
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80

12




offsets will implicitly occur. The coordinates of the antenna beam's intersection with
the ground (or cloud) are given by

X = h tan6; sinot
y = h tan6; cosof + vt i=1,2 4.11)

where 4 is the altitude of the satellite, 6; is the antenna nadir angle, v is the spacecraft
velocity, and o is the angular antenna scan rate. Figure 4.9 illustrates the intersection
pattern for an altitude of 525 km, a velocity of 7500 msec’!, and a scan rate of 10
seconds. In some cases the offsets are as large as 10 km while in others they are less
than 0.5 km. The amount of offset can be controlled, to some extent, by carefully
selecting the scan rate.

The velocity uncertainty error (4.7) was computed using the Monte Carlo simulation
program with Auge = 0.2 ms’!, and making 500 runs. The first computations varied
both AX1 and AX2 from 0 to 100 km and obtained the maximum value of |Auyy|
between the azimuth angles 0° and 70°. The results are shown in Figure 4.10.

Note that the wind error is almost independent of AX2. Due to this independence,
another plot is made with AX2 = 0 while varying AX1 and the azimuth angle ¢. This
plot is given in Figure 4.11.

As can be seen in both Figures 4.10 and 4.11, the error is well above the design limit
of 1 ms™! for offset values < 10 km and only approaches the limit with offsets on the
order of 100 km. This amount of offset is unacceptable since no rain cell will remain
constant over such a large horizontal distance.
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Figure 4.10 Magnitude wind-error versus AX1 and AX2 for the original scan pattern due to velocity uncertainty error.
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4.3.2 ALTERNATIVE THREE-VECTOR SCAN PATTERN

An alternate three-vector scan is shown in Figure 4.12. This pattern has the advantage
of spacing the three vectors a maximum distance apart to provide better linear
independence. However, it is more difficult to implement since a 2D electronically
scanned antenna is required. The original scan pattern can be produced by a
mechanically scanned antenna requiring less power and weight. The offsets AX1 and
AX?2 are still necessary to assure the three vectors are not co-planar.
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Figure 4.12 Alternate three-vector scan pattern.
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The same velocity uncertainty error analysis done in the previous section is repeated
here for the alternate three-vector scan. Figure 4.13 indicates the wind error for
varying values of AX1 and AX2. The plot appears vary similar to Figure 4.10
although with less error, but still well above the 1 ms*! limit for small offsets.

Figure 4.14 illustrates the velocity uncertainty error generated with AX2 = 0 while
varying AX1 and the azimuth angle. Again the wind-error is unacceptable.

For these two scan patterns, sufficient independence is not possible to obtain a
reasonable wind error and still maintain a small measurement footprint.

4.3.3 TWO-VECTOR SCAN PATTERN

To compute only the horizontal components of the wind vector, Figure 4.15 illustrates
a simple scan pattern that may be used. Since only one nadir angle is required, the
antenna design would be simplified, however, the second nadir angle is still required to
support de-aliasing techniques for ocean-wind scatterometery.

Although in this case the two vectors are co-planar, a singularity will only exist when

the vectors are co-linear, occurring at azimuth angles 0° and 90°. Computing the
velocity uncertainty for this scan pattern results in Figure 4.16
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Figure 4.15 Two-vector antenna scan pattern.

Figure 4.16 indicates that the two-vector scan pattern will allow errors of less than
1 ms'!. Next the simulation program used to calculate the antenna pointing error (4.9)
is run. First the change in azimuth antenna angle must be determined using (4.10).
For a PRF of 4800 Hz and 1024 pulse-pairs, the TOT will be 0.21 seconds. With the
TOT and ¢7 calculated, the antenna pointing error is computed using (4.9) with the
results shown in Figure 4.17. Figure 4.18 shows the total error defined as the
summation of both the velocity uncertainty and antenna pointing errors.
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Figure 4.18 indicates that the two-vector scan pattern results in acceptable wind error
between the azimuth angles of 16° to 70°. This results in a swathwidth on each side of
the satellites path equal to 249.26 km as shown in Figure 4.19. Thus the total swath
width is 2*249.26 = 498.52 km.

The disadvantage of this pattern is that any vertical component of wind (e.g., rain) will
present an error in the calculations of the horizontal wind components. This can be
seen by reviewing the measurement process. The measurement of the wind
components in the absence of a vertical component is

ug —A Uwx
Ugy uwy

uq) = sin 8y sin ¢,y +sin 01 cosyuy,

or

. 4.12
Uugy =sin 0y sin gou,,, +5sin 0 cosbyu,, (4.12)

If a vertical wind component does exist, the two measured velocities will equal

ugy = sin 8y sin ¢4,y +sin0) cosdyu,,y, — cosbyuy,,
. . . . 4.13
ugy = sin 0 sin gouy,, +sin 0, cosdyu,,, — cosb,u,,, (4.13)

Thus an error of -cos6;u,,, is introduced in each of the velocity measurements. The
amount of error caused by the vertical component u,,, is given in Figure 4.20. This
figure indicates that the two-vector scan pattern is very sensitive to any vertical
wind/rain component. The detection of a vertical component due to rain can be
accomplished by use of a SNR threshold. As seen in chapter 2, rain will produce
ample SNR (> 20 dB) which can be discriminated using a SNR threshold on a
range-gate basis. The threshold detection of rain within a range gate only identifies
those range gates which are susceptible to erroneous results. Thus another process is
required to estimate the vertical component of the rain.
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Figure 4.19 Two-vector swathwidth.
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Several empirical relationships have been developed which relate the reflectivity factor
Z, with the rain rate R. Work has been conducted by Gossard and others to obtain
similar equations relating the ZR-relationships with the vertical rain velocity V,. With
the selection of a rain drop-size distribution, a ZRV, model has been developed
[Gossard, 1992]. Figure 4.21 illustrates the results of such a model.

100 T T T T T T T T T

Exponential [ Log Normal Modified Cauchy
/ SAac
y=75
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Figure 4.21 Theoretical ZRV,. plots for log-normal distribution, modified
Cauchy distribution, and exponential distribution [Gossard, 1992].

To determine the vertical component V,, the radar must measure the reflectivity factor
Z and use a ZR-relationship to determine the corresponding value of rain rate, R. The
ZRV -relationship given in Figure 4.21 can then be used to determine the vertical
wind/rain velocity, V;. In practice, a look-up table can be employed to relate the
correct value of vertical velocity ¥, for a measured value of Z. Adding the values of
cosB;V, to (4.13) results in an accurate computation of the horizontal wind
components.

A full analysis of the accuracies of such models and their effect on the wind
measurement error, will require for further study.
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CHAPTER 5

NEW CANDIDATE SYSTEM

S.1 NEW CANDIDATE SYSTEM PARAMETERS

Many of the RAWS candidate system parameters given in Table 1.3 were modified
here. Such changes include an altitude of 525 km introduced to remain compatible
with the LAWS system, an increase of 3 dB in peak power to allow for a larger SNR,
and new values for the transmit frequency and PRF derived from the analysis
conducted in chapters 2 and 3. This chapter defines and calculates a new set of
candidate system parameters as a result of these changes.

One important parameter required for most of the following calculations is the slant
range to curved-earth. Values for this range can be obtained using the law of cosines
which reduces to

R =(h+r,)cosH; - \/(h+r¢,_.)2 cos? 6; —(h+r,_,)2 +re2 , (5.1
where 4 is the satellite's altitude, 7. the earth's radius, and 0, the nadir angle. Using

values of h = 525 km, ro = 6370 km, 6, = 35° and 0, = 30° (5.1) yields
R, =654.42 km and R, = 614.79 km.

5.1.1 RESOLUTION

The slant range resolution is given by

Ar = CTTC (5.2)
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where 1 is the compressed pulsewidth and ¢ is the speed of light. Since the
compressed pulsewidth has not been modified, the value of 1. taken from Table 1.3
may be substituted into (5.1), giving a slant range resolution of 150 m.

The horizontal resolution is simply given by
Ayp =By R, (5.3)

where B, is the azimuth beamwidth, and R the slant range to the radar footprint.

Figure 5.1 illustrates the geometry involved in determining the vertical resolution.

>/‘\ Ar clos 0,

B, R sine, Avy

N

Figure 5.1 Vertical resolution geometry.

The vertical resolution is a function of the slant range resolution, the elevation
beamwidth Bg, and the slant range, and can be expressed as

Ay, = %c—cose,- +BgR; sin6;. (5.4)
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Table 5.1 lists the values computed for the vertical and horizontal resolutions with
h =525 km, 6; and R; obtained from (5.1), and the appropriate elevation and azimuth
beamwidths at 94 and 24 GHz.

Table 5.1 Vertical and horizontal resolution.

01 = 35° 02 =30°
Frequency Ayp Ayy, Ayp Ayy
94 GHz (Bg = B4 = 1.2 mrad) 7853 m 5733 m 737.7m 498.8 m
24GHz (Bg =By =176 mrad) | 11518 m 783.5m 1082.0 m 670.9 m

5.1.2 FOOTPRINT

The footprint is defined where the 3 dB beamwidth intersects the ground. Using the
law of cosines and Figure 5.2, the along-track footprint, R, may be obtained from the
following equations

Ou =9,~ +ﬂ_9,
B
91=9i—79=

R, = (h+1,)c0s8, —J(h+1,)2 cos0, — (h+7,)? +1.2,

Ry = (h+r,)cosb, —\/(h+re)2 cos’ 8, - (h+r,)* +1},

R,=yR*+R?-2R R, cosp,. (5.5)
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Figure 5.2 Radar footprint geometry.

The across-track footprint will equal the horizontal resolution, Ayp, given in (5.3).
Table 5.2 lists the values computed for the radar along-track footprint with
h =525 km and the appropriate elevation and azimuth beamwidths at 94 and 24 GHz

Table 5.2 Radar along-track footprint.

Frequency 01 =35° 82 =30°
94 GHz (Bg = B¢ = 1.2 mrad) 1.0 km 0.877 km
24 GHz (Bg = B¢ = 1.76 mrad) 1.47 km 1.29 km
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5.1.3 SWATHWIDTH

The swathwidth is defined as twice the acceptable (i.e., satisfies the wind-error limit)
cross-track extent on either side of the satellite. For the 2-vector antenna scan pattern
shown in Figure 4.18, the swathwidth may be determined by

Ry =2R,sin6,(sin, —sin¢,) (5.6)

where R, and 6, are given in (5.1), and ¢, = 16° and ¢, = 70° are taken from section
4.3.3. This results in Rgy = 498.52 km.

S.1.4 AVERAGE POWER

The definition of the average power is

Prg = % {“Ppc,k (t)dt (5.7)

where Ppeai is the peak transmitted power, T, is the uncompressed pulsewidth, and 7
is the period of Ppeak. For a pulse-train uniformly spaced at 7 intervals, the average
power is simply

Pavg=DCPpeak=TuPRFPpeak, (58)

where PRF = 1/, and DC is the duty cycle. When using a pulse-pair waveform, Pavg
becomes twice that of (5.8) due to the additional pulse. Thus (5.8) becomes

Table 5.3 lists the values computed for Pavg using (5.9) with 1, = 20 psec, and
Ppeak = 6000 W.
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Table 5.3 Radar average power.

PRF Payg
4800 Hz @ 94 GHz 1152 W
4000 Hz @ 24 GHz 960 W

The use of solar panel technology may be deficient for such a large average power,
and the use of a nuclear power source required.
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5.2 NEW CANDIDATE PARAMETERS

The new candidate parameters are given in Table 5.4.

Table 5.4 New RAWS candidate system parameters.

Altitude 525 km
Target Volume Coverage 100 km x 100 km x 20 km
Look Angles (from vertical) 35° and 30°
Transmit Frequencies 94 GHz and 24 GHz
PRF 4800 Hz @ 94 GHz
4000 Hz @ 24 GHz
Pulse Width (Compressed) 1 usec
Time-Bandwidth Product 20
Antenna Size 8X8m
Scan Period 10 sec
Vertical Resolution For 6 = 35°:
0.57 km @ 94 GHz
0.78 km @ 24 GHz
For 6 = 30°:
0.50 km @ 94 GHz
0.67 km @ 24 GHz
Horizontal Resolution For 6 = 35°;
0.79 km @ 94 GHz
1.15 km @ 24 GHz
For 6 = 30°;
0.74 km @ 94 GHz

1.08 km @ 24 GHz
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Table 5.4 New RAWS candidate system parameters (continued).

Slant Range Resolution 150 m

- Footprint For 6 = 35°:
1.0 km x 0.79 km @ 94 GHz
1.47 km x 1.15 km @ 24 GHz
For 6 = 30°:
0.88 km x 0.74 km @ 94 GHz
1.29 km x 1.08 km @ 24 GHz

Swathwidth 498.52 km

Peak Power 6000 W

Average Power 1152 W @ PRF = 4800 Hz
960 W @ PRF = 4000 Hz

Receiver Noise Figure 4dB

Transmitter Losses 1.5dB

Receiver Losses 1.5dB

Spacecraft Speed 7.5 km/s
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CHAPTER 6

CONCLUSION

The major topics that were discussed are: the selection of an optimal frequency to
obtain the maximum SNR, the design of a transmit waveform to provide sufficient
unambiguous range and velocity, and the study of an antenna scan pattern capable of
providing wind-error accuracies of < 1 msec’!.

The comparison of the reflectivity factor comparison of the Deirmendjian model with
the Diem and Squires data proved acceptable for the thinner clouds characterized by
Do <92 pm and m, < 0.87 gm’. The SNR for these thinner clouds limits the system
sensitivity. Ample SNR (>10 dB) occurs at 94 GHz. The large-droplet cloud models,
although not realistic in nature due to their excessive drop diameters, provide the
maximum cloud attenuation. For such highly attenuating clouds, a lower frequency is
required for penetrating to the lower rain layers. The ice clouds provide ample SNR
for the higher frequencies due to their larger drop radii. Based on the SNR results, the
use of 94 GHz for the thinner clouds and 24 GHz for the large-droplet clouds is
recommended for the RAWS system. If only one frequency is to be used, 24 GHz
provides the best overall results. A complete set of SNR versus altitude is given in
Appendix A. No further work is required on the radar sensitivity analysis unless a

more accurate model is discovered or additional data is obtained.

The ability of the chirp-modulated waveform, in conjunction with the covariance
estimator, to eliminate range and Doppler ambiguities independently is a very desirable
feature. This allows for an effective high sampling rate of the weather echo while still
remaining unambiguous is range. The value of 7 was shown to correspond to the
maximum unambiguous velocity and spectral width measurable, while 7; provides the
limitation to the unambiguous range. Letting 7 equal 25 psec allows spectral width
as wide as 10.2 ms? to remain reasonably correlated and allows for a maximum
unambiguous velocity of £32.1 ms! at 94 GHz (the worst case). These values are
adequate for even tornadic storms.
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Computer programs were developed to compute the velocity uncertainty and antenna
pointing uncertainty errors for various antenna scan patterns. Three scan patterns
were analyzed to determine if they produce acceptable wind errors (i.e., < 1 ms’).
Due to the geometry of the satellite with respect to a single location on a cloud, the
matrix A becomes singular for three-vector scan patterns using flat-earth geometry and
produces unacceptable measurement errors using curved-earth geometry. A
two-vector scan pattern was shown to provide acceptable error, but lacks the ability to
determine all three wind components. Furthermore, any vertical component (i.e., rain)
will cause erroneous results in the computation of the horizontal wind components.
To minimize the effects caused by the rain, an estimate of the vertical velocity of rain
was discovered by using a ZRV relationship. Thus the horizontal components of the
wind can be determined from the covariance estimator and the vertical component of
the rain obtained from the measured reflectivity factor and the ZRV relationship.
Further analysis is required to determine the accuracy of such ZRV models and their
effects on the two-vector antenna scan pattern.

Finally, a new set of candidate parameters was developed. Definitions and the
associated values are presented and a summary table provided.
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APPENDIX A

Table Al presents a tabulated comparison of the Rayleigh and Mie two-way extinction
coefficients for all six frequencies and for each cloud layers.

Table A2 presents a tabulated comparison of the Rayleigh and Mie backscatter
coefficients for all six frequencies and for each cloud layers.

Figures Al - Al7 illustrate the SNR versus altitude plots generated for the 17
Deirmendjian cloud models.
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